Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We provide a comprehensive description of the intrinsic retrospective cardiac gating method of the CrumpCAT, a prototype small-animal X-ray computed tomography (CT) scanner designed and constructed at our research institution.

Abstract

The CrumpCAT is a prototype small-animal X-ray computed tomography (CT) scanner developed at our research institution. The CMOS detector with a maximum frame rate of 29 Hz and similar Tungsten X-ray sources with energies ranging from 50 kVp to 80 kVp are widely used across commercially available preclinical X-ray CT instruments. This makes the described work highly relevant to other institutions, despite the generally perceived wisdom that these detectors are not suitable for gating the high heart rates of mice (~600 beats/min). The scanner features medium- (200 µm) and high- (125 µm) resolution imaging, fluoroscopy, retrospective respiratory gating, and retrospective cardiac gating, with iterative or filtered-back projection image reconstruction. Among these features, cardiac gating is the most useful feature for studying cardiac functions in vivo, as it effectively eliminates image blurring caused by respiratory and cardiac motion.

Here, we describe our method for preclinical intrinsic retrospective cardiac-gated CT imaging, aimed at advancing research on in vivo cardiac function and structure analysis. The cardiac-gating method acquires a large number of projections at the shortest practical exposure time (~20 ms) and then retrospectively extracts respiratory and cardiac signals from temporal changes in raw projection sequences. These signals are used to reject projections belonging to the high motion rate inspiration phase of the respiratory cycle and to divide the remaining projections into 12 groups, each corresponding to one phase of the cardiac cycle. Each group is reconstructed independently using an iterative method to produce a volumetric image for each cardiac phase, resulting in a four-dimensional (4D) dataset.

These phase images can be analyzed either collectively or individually, allowing for detailed assessment of cardiac function. We demonstrated the effectiveness of both approaches of the prototype scanner's cardiac-gating feature through representative in vivo imaging results.

Introduction

Small-animal research often employs a combination of non-invasive imaging modalities, with X-ray computed tomography (CT), being a prominent choice due to its maturity, cost-effectiveness, speed1,2, and ability to provide complementary information alongside other modalities such as positron emission tomography (PET)2,3 and single-photon emission computed tomography (SPECT)2,4. However, like other imaging techniques, CT is susceptible to physiological motion artifacts caused by the beating heart....

Protocol

Animal experimental protocols were reviewed and approved by the Institutional Animal Care and Use Committee of the University of California, Los Angeles (UCLA). C57BL/6J mice (8 weeks old, male, 24-26 g) were used in this protocol. The CT scanner used in this study is the CrumpCAT (Figure 2), a prototype developed at our research institution for preclinical research, providing us with the control and flexibility needed to optimize acquisition and reconstruction protocols. The method assumes that anesthetized mice will have a heart rate no greater than 600 beats/min and a respiration rate between 20 and 180 breaths/min15<....

Representative Results

We first compared non-gated and gated CT images for visualizing cardiac calcification in mice (male, 30-32 g). The murine model of cardiac calcification was created by inducing cardiac injury by rapid freeze-thaw of cardiac tissue (cryo-injury), as described previously23. With the non-gated CT imaging protocols, cardiac calcifications were more clearly identified on the high-resolution (125 µm, binning 1) image (Figure 11A). The CNR was 3.2 ± 0.3 and 4.0 .......

Discussion

The specific hardware implementation described here is a custom-made X-ray CT system unique to our institute, but the specific detector is widely used across commercially available preclinical X-ray CT instruments, making the described work relevant to other institutions. This system is functionally the prototype for two commercially available and widely used in vivo X-ray microCT subsystems embedded
in preclinical PET/CT scanners. These microCT scanners share the detector architecture and performance.......

Disclosures

Dr. Richard Taschereau is a consultant with Sofie Biosciences and Xodus Imaging. Dr. Arion F. Chatziioannou is a founder of Sofie Biosciences.

Acknowledgements

We thank all members of the UCLA Crump Preclinical Imaging Technology Center for their help and support. In particular, we thank Mikayla Tamboline and Isabel Day for preparing the animals for cardiac CT imaging and thank Sophie Shumilov for generating some of the left ventricle ROIs during the study. We also thank Drs. Arjun Deb and Yijie Wang (UCLA) for providing the murine models of acute ischemic cardiac injury for cardiac calcification microCT imaging. This work is supported by NIH Cancer Center Support Grant (2 P30 CA016042-44).

....

Materials

NameCompanyCatalog NumberComments
C57BL/6J miceJackson Laboratory664Male, 8 weeks old, 24-26 g
Dexela cameraVarex1512Detector, 20 ms exposure, 74.8/149.6 µm pixel
VivoVistNanoprobes1301-5X0.25MLCT Contrast agent
X-ray sourceMoxtekTUB0008250 kV peak, 200 µA, 1.0 mm-thick Al filter

References

  1. Schambach, S. J., Bag, S., Schilling, L., Groden, C., Brockmann, M. A. Application of micro-CT in small animal imaging. Methods. 50 (1), 2-13 (2010).
  2. Koba, W., Jelicks, L. A., Fine, E. J. MicroPET/SPECT/CT imaging of small animal models of disease. Am J Pathol. 182 (2), 319-324 (2013).
  3. Hutchins, G. D., Miller, M. A., Soon, V. C., Receveur, T. Small animal PET imaging. ILAR J. 49 (1), 54-65 (2008).
  4. Franc, B. L., Acton, P. D., Mari, C., Hasegawa, B. H. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 49 (10), ....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cardiac gatingintrinsic retrospective gatingcomputed tomographyleft ventricleejection fractioncardiac calcification

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved