需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Here, we present the usefulness of longitudinal in vivo imaging in the follow-up of morphological changes of laser-induced choroidal neovascularization in mice.

摘要

Laser-induced choroidal neovascularization (CNV) is a well-established model to mimic the wet form of age-related macular degeneration (AMD). In this protocol, we aim to guide the reader not simply through the technical considerations of generating laser-induced lesions to trigger neovascular processes, but rather focus on the powerful information that can be obtained from multimodal longitudinal in vivo imaging throughout the follow-up period.

The laser-induced mouse CNV model was generated by a diode laser administration. Multimodal in vivo imaging techniques were used to monitor CNV induction, progression and regression. First, spectral domain optical coherence tomography (SD-OCT) was performed immediately after the lasering to verify a break of Bruch's membrane. Subsequent in vivo imaging using fluorescein angiography (FA) confirmed successful damage of Bruch's membrane from serial images acquired at the choroidal level. Longitudinal follow-up of CNV proliferation and regression on days 5, 10, and 14 after the lasering was performed using both SD-OCT and FA. Simple and reliable grading of leaky CNV leasions from FA images is presented. Automated segmentation for measurement of total retinal thickness, combined with manual caliber application for measurement of retinal thickness at CNV sites, allow unbiased evaluation of the presence of edema. Finally, histological verification of CNV is performed using isolectin GS-IB4 staining on choroidal flatmounts. The staining is thresholded, and the isolectin-positive area is calculated with ImageJ.

This protocol is especially useful in therapeutics studies requiring high-throughput-like screening of CNV pathology as it allows fast, multimodal, and reliable classification of CNV pathology and retinal edema. In addition, high resolution SD-OCT enables the recording of other pathological hallmarks, such as the accumulation of subretinal or intraretinal fluid. However, this method does not provide a possibility to automate CNV volume analysis from SD-OCT images, which has to be performed manually.

引言

The first successful attempt to mimic the pathology of human CNV in rodents was demonstrated almost three decades ago with a krypton laser in Long-Evans rats1. Thereafter, a krypton laser was used to break Bruch's membrane in the most popular mouse strain, C57BL/6J2,3,4. The success rate of CNV induction was verified with FA and histological stains. A rapid development of noninvasive imaging modalities, such as OCT, fostered the growth of the field of rodent preclinical models. The ability to monitor morphological changes in the retina at multiple ....

研究方案

All animals were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the EC Directive 86/609/EEC for animal experiments, using protocols approved and monitored by the Animal Experiment Board of Finland.

1. Laser-induced mouse CNV model 5

  1. Inspect the eyes of the animal macroscopically for any abnormalities.
  2. Weigh the mouse.
  3. Calculate and prepare an appropriate amount of anesthetics to use, based on the weight of the animal, e.g. a mixture of medetomidine (1 mg/kg), ketamine (75 mg/kg), and distilled water (0.9% NaCl solutio....

结果

A bubble or subretinal bleeding immediately after lasering is not always visible. Therefore, SD-OCT is particularly important to verify damage of Bruch's membrane. Figure 1 shows an example of OCT imaging at different time points after laser administration.

figure-results-411
Figure 1: OCT.......

讨论

Multimodal imaging offers valuable tools for CNV pathology evaluation. Here we presented an imaging protocol consisting of FA, SD-OCT, and automatic segmentation for the quick, reproducible, and reliable evaluation of CNV pathology. A break of Bruch's membrane after laser administration was confirmed. In addition, the use of SD-OCT at this stage also allowed immediate visualization of possible intraretinal and subretinal hemorrhages, which may confound the interpretation of results. Retinal leaks were graded based on the.......

披露声明

The author Symantas Ragauskas, Ph.D. is an employee (research scientist) and shareholder of Experimentica Ltd. that offers contract research services employing the preclinical CNV model used in this Article.

The author Eva Kielczewski is an employee (research applications engineer, OCT) of Leica Microsystems that produces SD-OCT systems used in this Article.

The author Joseph Vance is an employee (NA OCT Sales Director) of Leica Microsystems that produces SD-OCT systems used in this Article. Joseph Vance is also president and managing director of Spective, LLC.

The author Simon Kaja, Ph.D. is consultant Chief Scientific Officer and shareholder of Experimentica Ltd., a preclinical contract research organization that offers contract research services, incl. the preclinical CNV model used in this article. Simon Kaja, Ph.D. is also CEO of K&P Scientific, LLC, a life sciences consulting firm, and serves as the Dr. John P. and Therese E. Mulcahy Endowed Professor in Ophthalmology at Loyola University Chicago, Stritch School of Medicine. The terms of this arrangement have been reviewed and approved by Loyola University Chicago in accordance with its conflict of interest policy.

The author Giedrius Kalesnykas, Ph.D. is an employee (CEO) and shareholder of Experimentica Ltd. that offers contract research services employing the preclinical CNV model used in this Article.

致谢

The authors would like to thank Yuliya Naumchuk (Loyola University Chicago) and Agne Žiniauskaitė (Experimentica Ltd.) for excellent technical and videographic support. Dr. Kaja’s research program is supported by the Dr. John P. and Therese E. Mulcahy Endowed Professorship in Ophthalmology at Loyola University Chicago.

....

材料

NameCompanyCatalog NumberComments
Medetomidine (commercial name Domitor)OrionVnr 01 56 02Anesthesia
KetamineIntervetVnr 51 14 85Anesthesia
0,9% NaClB Braun357 0340Anesthesia
Xylazine (commercial name Rompun vet)Bayervnr 14 89 99Anesthesia
TropicamideSantenVnr 04 12 36Mydriatic agent
ViscotearsAlconVnr 44 54 81Lubricant
SystaneAlcon -Lubricant
5% Fluorescein sodium saltSigma AldrichF6377-100GFluoresent agent
Atipamezole (commercial name Antisedane)OrionVnr 47 19 53Anesthesia

参考文献

  1. Dobi, E. T., Puliafito, C. A., Destro, M. A new model of experimental choroidal neovascularization in the rat. Arch. Ophthalmol. Chic. Ill 1960. 107, 264-269 (1989).
  2. Tobe, T., et al.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

In Vivo ImagingChoroidal NeovascularizationAge related Macular DegenerationProliferative Diabetic RetinopathyRetinopathy Of PrematurityVEGFLaser induced CNV ModelSD OCTFluorescein AngiographyAutomated SegmentationRetinal Thickness

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。