登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol provides a technique to harvest and culture explanted dorsal root ganglion (DRG) from adult Sprague Dawley rats in a multi-compartment (MC) device.

Abstract

The most common peripheral neuronal feature of pain is a lowered stimulation threshold or hypersensitivity of terminal nerves from the dorsal root ganglia (DRG). One proposed cause of this hypersensitivity is associated with the interaction between immune cells in the peripheral tissue and neurons. In vitro models have provided foundational knowledge in understanding how these mechanisms result in nociceptor hypersensitivity. However, in vitro models face the challenge of translating efficacy to humans. To address this challenge, a physiologically and anatomically relevant in vitro model has been developed for the culture of intact dorsal root ganglia (DRGs) in three isolated compartments in a 48-well plate. Primary DRGs are harvested from adult Sprague Dawley rats after humane euthanasia. Excess nerve roots are trimmed, and the DRG is cut into appropriate sizes for culture. DRGs are then grown in natural hydrogels, enabling robust growth in all compartments. This multi-compartment system offers anatomically relevant isolation of the DRG cell bodies from neurites, physiologically relevant cell types, and mechanical properties to study the interactions between neural and immune cells. Thus, this culture platform provides a valuable tool for investigating treatment isolation strategies, ultimately leading to an improved screening approach for predicting pain.

Introduction

Chronic pain is the leading cause of disability and loss of work globally1. Chronic pain affects about 20% of adults globally and imposes a significant societal and economic burden2, with total costs estimated between $560 and $635 billion every year in the United States3.

The main peripheral feature exhibited by chronic pain patients is a lowered stimulation threshold of nerves, which leads to the nervous system being more responsive to stimuli4,5. The lowered stimulation threshold can result in a painful respo....

Protocol

DRG harvest was performed in compliance with the Institutional Animal Care and Use Committee (IACUC) at the University of Nebraska-Lincoln. Female Sprague Dawley rats aged 12 weeks (~250 g) were used for the study. The details of the animals, reagents, and equipment used in the study are listed in the Table of Materials.

1. Multi-compartment device fabrication and assembly

  1. Computer-aided design and 3D printing of the multi-compartment device
    .......

Representative Results

The present protocol described a technique to harvest and culture DRG from adult Sprague Dawley rats in a multi-compartment (MC) device. As shown in Figure 1, DRG harvested from adult rats was trimmed and cut into ~0.5 mm. The trimmed and cut DRGs were then embedded in a hydrogel in the soma region of the MC device (Figure 2) and cultured for 27 days before neurite quantification. DRG was cultured in plain gel to serve as the control. The c.......

Discussion

This protocol outlines a method to harvest adult Sprague Dawley DRGs and culture them in 3D natural hydrogels. In contrast to this method, other approaches to harvesting DRGs from mice and rats involve isolating the spinal column. The excised spinal column is halved, and the spinal cord is removed to expose DRGs23,24,25. Damage to the spinal cord limits blood supply, which affects DRGs and internal neurons26

Acknowledgements

This work was supported by an NSF Grant (2152065) and an NSF CAREER Award (1846857). The authors would like to thank all current and past members of the Wachs Lab for contributing to this protocol. Diagrams in Figure 1 were made in Biorender.

....

Materials

NameCompanyCatalog NumberComments
#5 forcepsFine Science Tools11252-00For trimming and cutting DRG
10x DMEMMilliporeSigmaD2429
1x PBS (autoclaved)Prepared in lab7.3 - 7.5 pH
24 well platesVWR82050-892To temporarily store harvested and cut DRGs
3 mL Syringe sterile, single useBD309657
48 well platesGreiner Bio-One677180
60 mm Petri dishFisher ScientificFB0875713ATo hold media for trimming and cutting
Aluminium foilFisherbrand01-213-104
B27 Plus 50xThermoFisher17504044For DRG media
Collagen type IIbidi50205
Curved cup Friedman Pearson RongeurFine Science Tools16221-14For dissection
Dumont #3 forcepsFine Science Tools11293-00For dissection
Fetal Bovine Serum (FBS)ThermoFisher16000044For DRG media
Form cureForm Labscuring agent
Form washForm LabsTo wash excess resins off MC
Glass bead sterilizerFisher ScientificNC9531961
Glass vials (8 mL)DWK Life Sciences (Wheaton)224724
GlutaMaxThermoFisher35050-061For DRG media
HEPES (1M)Millipore SigmaH0887
High temp V2 resinFormLabsFLHTAM02
Hyaluronic Acid Sodium SaltMilliporeSigma53747Used to make MAHA
IrgacureMilliporeSigma410896
LamininR&D Systems344600501
Large blunt-nose scissorsMilitexEG5-26For dissection
Large forceps (serrated tips)Militex9538797For dissection
Large sharp-nosed scissorsFine Science Tools14010-15For dissection
Low Retention pipette tipsFisher Scientific02-707-017For pipetting collagen and MAHA
Methacrylated hyaluronic acid (MAHA)Prepared in labN/A85 - 115 % methacrylation
Nerve Growth Factor (NGF)R&D Systems556-NG-100For DRG media
Neurobasal A MediaThermoFisher10888022For DRG media
ParafilmBemisPM996
ParafilmBemisPM996
Penicillin/Streptomycin (PS)EMD Millipore516106For DRG media
pH test stripsVWR InternationalBDH35309.606
Pipette tips (1000 µL)USA Scientific1111-2021
Preform 3.23.1 softwareFormslabTo upload STL file
RatCharles River
Resin 3D printerForm LabsForm 3L3D printing MC device
Small sharp-nosed scissorsFine Science Tools14094-11For dissection
Sodium bicarbonateMilliporeSigmaS6014
Straight cup rongeurFine Science Tools16004-16For dissection
Straight edge spring scissorsFine Science Tools15024-10For dissection
Surgical Scaplel blade (No. 10)Fisher Scientific22-079-690
Syring filters, PES (0.22 µm)Celltreat229747
Tiny spring scissorsWorld Precision Instruments14003For trimming and cutting DRG
UV lampAnalytik Jena USTo photocrosslink hydrogel (15 - 18 mW/cm2)

References

Explore More Articles

Dorsal Root GangliaDRGIn Vitro ModelPeripheral NeuronsNociceptor HypersensitivityMulti compartment CultureHydrogelNeural immune InteractionsPain Research

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。