Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
Wir beschreiben ein Protokoll, das die Isolierung von murinen Kolonkrypten für die Entwicklung von 3-dimensionalen Kolonoiden beschreibt. Die etablierten Kolonoide können dann terminalisiert werden, um die zelluläre Zusammensetzung des Wirtsepithels widerzuspiegeln, bevor sie eine entzündliche Herausforderung erhalten oder angewiesen werden, eine epitheliale Monoschicht zu bilden.
Das Darmepithel spielt eine wesentliche Rolle für die menschliche Gesundheit, da es eine Barriere zwischen dem Wirt und der äußeren Umgebung darstellt. Diese hochdynamische Zellschicht stellt die erste Verteidigungslinie zwischen mikrobiellen und immunen Populationen dar und hilft, die Immunantwort des Darms zu modulieren. Die Störung der Epithelbarriere ist ein Kennzeichen der chronisch entzündlichen Darmerkrankung (CED) und für das therapeutische Targeting von Interesse. Das 3-dimensionale Kolonoidkultursystem ist ein äußerst nützliches In-vitro-Modell für die Untersuchung der Dynamik von Darmstammzellen und der Physiologie von Epithelzellen in der Pathogenese von CED. Im Idealfall wäre die Etablierung von Kolonoiden aus dem entzündeten Epithelgewebe von Tieren am vorteilhaftesten, um die genetischen und molekularen Einflüsse auf Krankheiten zu beurteilen. Wir haben jedoch gezeigt, dass in vivo Epithelveränderungen bei Kolonoiden, die von Mäusen mit akuter Entzündung gebildet wurden, nicht unbedingt erhalten bleiben. Um dieser Einschränkung zu begegnen, haben wir ein Protokoll zur Behandlung von Kolonoiden mit einem Cocktail von Entzündungsmediatoren entwickelt, die typischerweise während einer CED erhöht sind. Während dieses System ubiquitär auf verschiedene Kulturbedingungen angewendet werden kann, legt dieses Protokoll den Schwerpunkt auf die Behandlung sowohl auf differenzierten Kolonoiden als auch auf 2-dimensionalen Monoschichten, die von etablierten Kolonoiden abgeleitet sind. In einer traditionellen Kulturumgebung werden Kolonoide mit Darmstammzellen angereichert, was eine ideale Umgebung für die Untersuchung der Stammzellnische bietet. Dieses System erlaubt jedoch keine Analyse der Merkmale der Darmphysiologie, wie z.B. der Barrierefunktion. Darüber hinaus bieten traditionelle Kolonoide nicht die Möglichkeit, die zelluläre Antwort von terminal-differenzierten Epithelzellen auf proinflammatorische Reize zu untersuchen. Die hier vorgestellten Methoden bieten einen alternativen experimentellen Rahmen, um diese Einschränkungen zu adressieren. Das 2-dimensionale Monolayer-Kultursystem bietet auch die Möglichkeit für ein therapeutisches Wirkstoff-Screening ex vivo. Diese polarisierte Zellschicht kann mit Entzündungsmediatoren auf der basalen Seite der Zelle und gleichzeitig mit putativen Therapeutika apikal behandelt werden, um ihren Nutzen bei der CED-Behandlung zu bestimmen.
Entzündliche Darmerkrankungen (CED) sind eine chronische, remittierende und rezidivierende Erkrankung, die durch Episoden von Entzündungen und klinischer Ruhe gekennzeichnet ist. Die Ätiologie der CED ist multifaktoriell, aber zu den wichtigsten charakteristischen Merkmalen der Erkrankung gehören eine gestörte Barrierefunktion und eine erhöhte Permeabilität des Darmepithels sowie proinflammatorische Signalkaskaden, die innerhalb des Epithelkompartiments aktiviert werden 1,2. Mehrere In-vitro- und In-vivo-Modelle wurden verwendet, um die Epithelreaktion während CED zu rekapitulieren, einschließlich Zellkultur- und Mausmodellen der Entzündung3. Alle diese Systeme weisen jedoch wichtige Mängel auf, die ihre Fähigkeit einschränken, die epithelialen Veränderungen während der IBD4 zu rekapitulieren. Die meisten Zelllinien, die zur Untersuchung von CED verwendet werden, sind transformiert, haben die Fähigkeit, eine Monoschicht zu bilden, und können3 differenzieren, sich aber intrinsisch anders vermehren als nicht transformierte Darmepithelzellen im Wirt. Zur Untersuchung von CED werden verschiedene murine Entzündungsmodelle verwendet, darunter Knockout-Modelle, infektiöse Modelle, chemische Entzündungsmodelle und T-Zell-Transfermodelle 5,6,7,8. Während jeder von ihnen bestimmte ätiologische Aspekte der CED untersuchen kann, wie z. B. genetische Veranlagungen, Barrieredysfunktionen, Immunderegulation und das Mikrobiom, sind sie in ihrer Fähigkeit, die multifaktorielle Natur der Krankheit zu untersuchen, begrenzt.
Intestinale Organoide, einschließlich Enteroide und Kolonoide, haben sich in den letzten zehn Jahren als nützliches In-vitro-Modell etabliert, um nicht nur die Dynamik von Darmstammzellen zu untersuchen, sondern auch ihre Rolle, die Barriereintegrität und die Funktion des Darmepithels bei der Darmhomöostase und -erkrankung spielen. Diese Entitäten haben wesentlich zu unserem Verständnis der Pathogenese von CED9 beigetragen und neue Möglichkeiten für die personalisierte Medizin eröffnet. Kolonoide oder aus Stammzellen gewonnene, selbstorganisierende Gewebekulturen aus dem Dickdarm wurden sowohl aus murinem als auch aus menschlichem Gewebe in einem Prozess entwickelt, der es Stammzellen in Darmkrypten ermöglicht, sich zu vermehren und auf unbestimmte Zeit erhalten zu bleiben10. Die Stammzellnische in vivo stützt sich auf extrazelluläre Faktoren, um ihr Wachstum zu unterstützen, insbesondere auf die kanonischen Wnt-Signalwege und die knochenmorphogenen Proteinsignalwege11. Die Hinzufügung dieser Faktoren fördert die Gesundheit und Langlebigkeit von Kolonoiden, treibt die Kultur aber auch in Richtung eines stammzellähnlichen Zustands, der nicht die in vivo epitheliale Zellarchitektur widerspiegelt, die sowohl aus sich selbst erneuernden als auch aus terminalen differenzierten Zellen besteht12,13. Während die Funktionalität des Darmepithels von der kontinuierlichen Wechselwirkung zwischen dem Stammzellkompartiment und den differenzierten Zellen abhängt, ist die Fähigkeit, beides in einem Kolonoidkultursystem zu haben, ziemlich begrenzt. Trotz dieser Einschränkungen bleibt das Organoid-Kultursystem der Goldstandard, um die intrinsischen Eigenschaften des Epithels ex vivo zu untersuchen. Nichtsdestotrotz müssen möglicherweise alternative Kulturstrategien in Betracht gezogen werden, um die vorliegende wissenschaftliche Frage zu beantworten.
Es wurde gezeigt, dass Mäuse, die ein kontinuierliches 7-tägiges Regime von Dextrans-Natriumsulfat (DSS) erhalten, sowohl eine epitheliale Entzündung als auch eine Barrieredysfunktion entwickeln14. Darüber hinaus wurden auch das Versagen der mitochondrialen Biogenese und die metabolische Reprogrammierung innerhalb des Darmepithels, die sich bei humaner CED gezeigt haben, in diesem DSS-Modell der Kolitis15 erfasst. Unsere vorläufigen Daten zeigen jedoch, dass die Merkmale des Versagens der mitochondrialen Biogenese in Kolonoiden, die aus den Krypten von DSS-behandelten Tieren stammen, nicht erhalten bleiben (ergänzende Abbildung 1). Daher müssen alternative Kulturmethoden verwendet werden, um zu untersuchen, wie Entzündungen epitheliale Veränderungen während der murinen Darmentzündung vorantreiben. Hier skizzieren wir ein von uns entwickeltes Protokoll, das beschreibt, 1) wie man Krypten aus ganzem Dickdarmgewebe isoliert, um murine Kolonoide zu etablieren, 2) wie man diese Zellpopulation terminal, um die Zellpopulation widerzuspiegeln, wie sie in vivo steht, und 3) wie man in diesem In-vitro-Modell eine Entzündung induziert. Um Arzneimittelwechselwirkungen innerhalb des entzündeten Epithels zu untersuchen, haben wir ein Protokoll entwickelt, um 2-dimensionale (2D) Monoschichten aus murinen Kolonoiden zu etablieren, die basal mit Entzündungsmediatoren und apikal mit medikamentösen Therapien behandelt werden können.
Alle hier beschriebenen Versuche mit murinem Gewebe wurden vom Institutional Review Board der University of Pittsburgh genehmigt und in Übereinstimmung mit den Richtlinien des Animal Research and Care Committee der University of Pittsburgh und des UPMC durchgeführt.
1. Vorbereitung auf die Kultur
HINWEIS: Alle Reagenzien sind in der Materialtabelle aufgeführt und alle Lösungszusammensetzungen finden Sie in der Tabelle der Lösungszusammensetzung (Tabelle 1).
2. Kryptenisolierung aus murinem Dickdarmgewebe
HINWEIS: Übertragen Sie das Gewebe auf Eis. Nehmen Sie die entsprechende Menge der Basalmembranmatrix aus der Lagerung bei −20 °C und tauen Sie sie auf Eis auf. Jede 24-Well-Beschichtung ist mit 15 μl Basalmembranmatrix beschichtet. Bereiten Sie CIB1, CIB2 und das vollständige Dickdarmwachstumsmedium wie in Abschnitt 1 beschrieben vor.
3. Passage der Kolonoide
HINWEIS: Jede Vertiefung kann in der Regel 1:4 bis 1:6 entsprechend der Dichte der ursprünglichen Vertiefung durchgelassen werden. Nehmen Sie die entsprechende Menge der Basalmembranmatrix aus −20 °C und legen Sie sie zum Auftauen auf Eis. Kolonoide können nach zwei Passagen für Experimente verwendet werden. Bei der Passage von Kolonoiden werden die Schritte in einer biologischen Sicherheitswerkbank durchgeführt, um eine Kontamination zu vermeiden.
4. Enddifferenzierung der Dickdarmzellen
5. Induktion von Entzündungen in differenzierten Kolonoiden mit Entzündungsmediatoren
6. Intestinale epitheliale Monoschichten, die von etablierten murinen Kolonoiden abgeleitet sind
ANMERKUNG: Murine Darmepithel-Monoschichten werden von murinen Kolonoiden abgeleitet, die mindestens zweimal durchgangen wurden. Um eine erfolgreiche Monolayerbildung in 3-5 Tagen zu ermöglichen, ist es zwingend erforderlich, die Kolonoide nicht in einzelne Zellen zu trennen. Fragmentierte Organoide, die enzymatisch in zelluläre Cluster dissoziiert wurden, sind ideal für das Wachstum.
7. Messung des Nettowiderstands der epithelialen Monolagen mit einem Voltohmmeter an den Tagen 3 - 5 der Monolayer-Kultur
HINWEIS: Die Essstäbchenelektroden ähneln einer Pinzette und sind asymmetrisch in der Länge. Der längere Arm der Sonde ist die basolaterale Elektrode und der kürzere Arm ist die apikale Elektrode. Es kann schwierig sein, die Sonde zwischen der Innen- und Außenseite des Zellkultureinsatzes einzuführen. Wenn Sie die Sonde beim Einführen in einem leichten Winkel platzieren und anschließend die Sonde vertikal ausrichten, wird verhindert, dass die Sonde stecken bleibt. Achten Sie darauf, den Nettowiderstand jedes Zellkultureinsatzes in einem ähnlichen Winkel abzulesen, da dies die Werte beeinflussen kann.
8. Berechnung des TEER anhand von Nettowiderstandsmessungen mit dem Voltohmmeter
ANMERKUNG: Eine erfolgreiche Monolayer-Bildung der Kolonoide führt zu TEER-Messungen von mehr als 115 Ω·cm2.
9. Induktion von Entzündungen in den epithelialen Monolayern mit Entzündungsmediatoren
Das 3D-Darmkolonoidkultursystem ist ein unschätzbares Werkzeug, um den intrinsischen Beitrag des Epithels zur Homöostase der Darmschleimhaut zu untersuchen. Das beschriebene Protokoll enthält detaillierte Anweisungen zur Isolierung von Krypten aus C57BL/6J (WT)-Mäusen im Alter von 8 Wochen und zur Etablierung eines langfristigen Kolonoidkultursystems, das für mehrere nachgeschaltete Anwendungen manipuliert werden kann. Nach der Isolierung und Plattierung von Krypten in der Basalmembranmatrix erscheinen die Krypten d...
Die Entwicklung von Organoiden hat die Art und Weise revolutioniert, wie die wissenschaftliche Gemeinschaft Organsysteme in vitro untersucht, mit der Fähigkeit, die zelluläre Struktur und Funktion eines Tieres oder Menschen in einer Schale teilweise zu rekapitulieren. Darüber hinaus bieten organoide Systeme, die von Menschen mit Krankheiten abgeleitet wurden, ein vielversprechendes Werkzeug für die personalisierte Medizin, das die therapeutische Entscheidungsfindung leiten könnte. Hier beschreiben wir ein g...
Die beitragenden Autoren haben nichts offenzulegen.
Diese Arbeit wurde von den National Institutes of Health Grants R01DK120986 (an K.P.M.) unterstützt.
Name | Company | Catalog Number | Comments |
0.4-μM transparent transwell, 24-well | Greiner Bio-one | 662-641 | |
15-mL conical tubes | Thermo Fisher | 12-565-269 | |
50-mL conical tubes | Thermo Fisher | 12-565-271 | |
70-μM cell strainer | VWR | 76327-100 | |
Advanced DMEM/F12 | Invitrogen | 12634-010 | Stock Concentration (1x); Final Concentration (1x) |
B-27 supplement | Invitrogen | 12587-010 | Stock Concentration (50x); Final Concentration (1x) |
Chopsticks Electrode Set for EVO | World Precision Instruments | STX2 | |
Corning Matrigel GFR Membrane Mix | Corning | 354-230 | Stock Concentration (100%); Final Concentration (100%) |
Dithiothreitol (DTT) | Sigma-Aldrich | D0632-5G | Stock Concentration (1 M); Final Concentration (1.5 mM); Solvent (ultrapure water) |
DMEM high glucose | Thermo Fisher | 11960-069 | Stock Concentration (1x); Final Concentration (1x) |
Dulbecco's phosphate-buffered saline without Calcium and Magnesium | Gibco | 14190-144 | Stock Concentration (1x); Final Concentration (1x) |
Ethylenediaminetetraacetic acid (ETDA) | Sigma-Aldrich | E7889 | Stock Concentration (0.5 M); Final Concentration (30 mM) |
Fetal Bovine Serum | Bio-Techne | S11150H | Stock Concentration (100%); Final Concentration (1%) |
Fisherbrand Superfrost Plus Microscope Slides, White, 25 x 75 mm | Thermo Fisher | 12-550-15 | |
G418 | InvivoGen | ant-ga-1 | Final Concentration (400 µg/µL) |
Gentamicin Reagent | Gibco/Fisher | 15750-060 | Stock Concentration (50 mg/mL); Final Concentration (250 μg/mL) |
GlutaMAX-1 | Fisher Scientific | 35050-061 | Stock Concentration (100x); Final Concentration (1x) |
HEPES 1 M | Gibco | 15630-080 | Stock Concentration (1 M); Final Concentration (10 mM) |
hIFNγ | R&D Systems | 285-IF | Stock Concentration (1000 ng/µL); Final Concentration (10 ng/mL); Solvent (ultrapure water) |
hIL-1β | R&D Systems | 201-LB | Stock Concentration (10 ng/µL); Final Concentration (20 ng/mL); Solvent (ultrapure water) |
hTNFα | R&D Systems | 210-TA | Stock Concentration (10 ng/µL); Final Concentration (40 ng/mL); Solvent (ultrapure water) |
Hydrogen Peroxide | Sigma | H1009 | Stock Concentration (30%); Final Concentration (0.003%); Solvent (Mouse wash media) |
Hygromycin B Gold | InvivoGen | ant-hg-1 | Final Concentration (400 µg/µL) |
L-WRN Cell Line | ATCC | CRL-3276 | |
mEGF | Novus | NBP2-35176 | Stock Concentration (0.5 µg/µL); Final Concentration (50 ng/mL); Solvent (D-PBS + 1% BSA) |
N-2 supplement | Invitrogen | 17502-048 | Stock Concentration (100x); Final Concentration (1x) |
N-Acetyl-L-cysteine | Sigma | A9165-5G | Stock Concentration (500 mM); Final Concentration (1 mM); Solvent (ultrapure water) |
Noggin | Peprotech | 250-38 | Stock Concentration (0.1 ng/µL); Final Concentration (100 ng/mL); Solvent (UltraPure water + 0.1% BSA) |
Penicillin-Streptomycin (10,000 U/mL) | Thermo Fisher | 15140-122 | Stock Concentration (100x); Final Concentration (1x) |
Petri dishes (sterilized; 100 mm x 15 mm) Polystrene disposable | VWR | 25384-342 | |
Polystyrene Microplates, 24 well tissue culture treated, sterile | Greiner Bio-one | 5666-2160 | |
R-Spondin | R&D Systems | 3474-RS-050 | Stock Concentration (0.25 µg/µL); Final Concentration (500 ng/mL); Solvent (D-PBS + 1% BSA) |
Tryp LE Express | Thermo Fisher | 12604-013 | Stock Concentration (10x); Final Concentration (1x); Solvent (1 mM EDTA) |
UltraPure Water | Invitrogen | 10977-023 | Stock Concentration (1x); Final Concentration (1x) |
Y-27632 dihyddrochloride | Abcam | ab120129 | Stock Concentration (10 mM); Final Concentration (10 µM); Solvent (UltraPure Water) |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten