Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Das hier beschriebene AcroSensE-Mausmodell und die hier beschriebenen Live-Cell-Imaging-Methoden bieten einen neuen Ansatz zur Untersuchung der Kalziumdynamik im subzellulären Kompartiment des Spermienakrosoms und wie sie Zwischenschritte regulieren, die zur Membranfusion und Akrosomen-Exozytose führen.
Die Akrosom-Exozytose (AE), bei der das einzelne exozytotische Vesikel der Spermien mit der Plasmamembran verschmilzt, ist ein komplexer, kalziumabhängiger Prozess, der für die Befruchtung unerlässlich ist. Unser Verständnis darüber, wie die Kalziumsignalisierung die AE reguliert, ist jedoch noch unvollständig. Insbesondere das Zusammenspiel zwischen intraakrosomaler Kalziumdynamik und den Zwischenschritten, die zur AE führen, ist nicht gut definiert. Hier beschreiben wir eine Methode, die räumliche und zeitliche Einblicke in die akrosomale Kalziumdynamik und deren Beziehung zur Membranfusion und anschließenden Exozytose des Akrosomvesikels liefert. Die Methode verwendet eine neuartige transgene Maus, die einen Akrosomen-gerichteten Sensor für Exozytose (AcroSensE) exprimiert. Der Sensor kombiniert einen genetisch kodierten Kalziumindikator (GCaMP), der mit mCherry fusioniert ist. Dieses Fusionsprotein wurde speziell entwickelt, um die gleichzeitige Beobachtung von akrosomaler Kalziumdynamik und Membranfusionsereignissen zu ermöglichen. Die Echtzeitüberwachung der akrosomalen Kalziumdynamik und AE in lebenden AcroSensE-Spermien wird durch eine Kombination aus Bildgebung mit hoher Bildrate und einem Stimulanzien-Verabreichungssystem erreicht, das auf einzelne Spermien abzielen kann. Dieses Protokoll enthält auch mehrere Beispiele für grundlegende Methoden zur Quantifizierung und Analyse der Rohdaten. Da das AcroSensE-Modell genetisch kodiert ist, kann seine wissenschaftliche Bedeutung durch die Verwendung leicht verfügbarer genetischer Werkzeuge wie Kreuzungen mit anderen genetischen Modellen der Maus oder auf der Genom-Editierung (CRISPR) basierende Methoden erhöht werden. Mit dieser Strategie können die Rollen zusätzlicher Signalwege bei der Spermienkapazität und -befruchtung aufgeklärt werden. Zusammenfassend lässt sich sagen, dass die hier beschriebene Methode ein bequemes und effektives Werkzeug darstellt, um die Kalziumdynamik in einem bestimmten subzellulären Kompartiment - dem Spermienakrosom - zu untersuchen und wie diese Dynamik die Zwischenschritte reguliert, die zur Membranfusion und Akrosomen-Exozytose führen.
Spermien erwerben die Fähigkeit zur Befruchtung während eines Prozesses, der als Kapazitation1 bezeichnet wird. Ein Endpunkt dieses Prozesses ist, dass die Spermien die Fähigkeit erwerben, AE zu durchlaufen. Daten aus mehr als zwei Jahrzehnten belegen das Vorhandensein eines komplexen, mehrstufigen Modells der AE in Säugetierspermien (zusammengefasst in 2,3). Die Untersuchung von AE in lebenden Spermien ist jedoch eine Herausforderung, und die derzeit verfügbaren Methoden zur Überwachung dieses Prozesses mit ausreichender Auflösung sind umständlich und erfordern mehrere Präparationsschr....
Alle Tierbehandlungen wurden gemäß den Richtlinien durchgeführt und vom Institutional Animal Care and Use Committee der Cornell University genehmigt (#2002-0095). Für die vorliegende Studie wurden 8-10 Wochen alte AcroSensE-Mäuse2 verwendet. Anfragen zur Verfügbarkeit der AcroSensE-Mäuse können an den korrespondierenden Autor gerichtet werden.
1. Samenentnahme und -wäsche
Abbildung 2 zeigt eine vereinfachte Darstellung, die die Abfolge der Fluoreszenzänderungen zeigt, die nach der erfolgreichen Stimulation der Spermien zu erwarten sind. Das obere Feld von Abbildung 2 zeigt die Änderungen der GCaMP3-Fluoreszenzintensität, bei der das Signal zunächst schwach ist (die akrosomalen Kalziumkonzentrationen sind niedriger als die GCaMP3-KD) und beim Eintritt von Kalziumionen über Fusionsporen die Helligkeit der Fluoreszenz .......
Hier wird eine mikroskopiebasierte Methode beschrieben, um das neu generierte AcroSensE-Mausmodell für die Echtzeit-Einzelzellüberwachung und -analyse des Zusammenspiels zwischen akrosomaler Kalziumdynamik und Zwischenschritten, die zu AE führen, zu nutzen. Zusammen mit leicht verfügbaren genetischen Ansätzen, wie z. B. der Kreuzung mit anderen genetischen Modellen der Maus oder der Geneditierung, bieten dieses Modell und diese Methode ein leistungsfähiges System, um die Rolle verschiedener Komponenten und Signalwe.......
Keine Autoren haben Interessenkonflikte im Zusammenhang mit dieser Arbeit zu melden.
Diese Arbeit wurde durch die National Institutes of Health Grants R01-HD093827 und R03-HD090304 (A.J.T.) unterstützt.
....Name | Company | Catalog Number | Comments |
100x oil objective | Olympus Japan | UPlanApo, | |
2-hydroxypropyl-b-cyclodextrin | Sigma | C0926 | |
35 mm coverslip dish, 1.5 thickness | MatTek Corp. | P35G-1.5-20-C | |
5 mL round-bottomed tube | Falcon | 352054 | |
Borosilicate glass capilarries | Sutter Instrument Co. CA USA | B200-156-10 | |
CaCl2 | Sigma | C4901 | |
Confocal microscope | Olympus Japan | Olympus FluoView | |
Glucose | Sigma | G7528 | |
Graduated tip | TipOne, USA Scientific | ||
HEPES | Sigma | H7006 | |
ImageJ | National Institutes of Health | https://imagej.nih.gov/ij/plugins/index.html | |
KCl | Sigma | P9541 | |
Lactic acid | Sigma | G5889 | |
Live-Cell Microscope Incubation Systems | TOKAI HIT Shizuoka, Japan | Model STX | |
MgCl2 | Sigma | M8266 | |
Micropipette Puller | Sutter Instrument Co. CA USA | Model P-97 | |
NaCl | Sigma | S3014 | |
NaHCO3 | Sigma | S6297 | |
Plastic transfer pipette | FisherBrand | 13-711-6M | |
Poly-D-lysine | Sigma | P7280 | |
Pyruvic acid | Sigma | 107360 | |
Single cell delivery system | Parker, Hauppauge, NY | Picospritzer III |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten