Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Darin demonstrieren wir ein dreistufiges Organoidmodell (zweidimensionale [2D]-Expansion, 2D-Stimulation, dreidimensionale [3D]-Reifung), das ein vielversprechendes Werkzeug für die Sehnengrundlagenforschung und eine potenziell gerüstfreie Methode für das Tendon Tissue Engineering bietet.
Sehnen und Bänder (T/L) sind starke, hierarchisch organisierte Strukturen, die den Bewegungsapparat vereinen. Diese Gewebe haben eine streng angeordnete Kollagen-Typ-I-reiche extrazelluläre Matrix (EZM) und Zellen der T/L-Linie, die hauptsächlich in parallelen Reihen angeordnet sind. Nach einer Verletzung benötigen T/L eine lange Zeit für die Rehabilitation mit hohem Ausfallrisiko und oft unbefriedigenden Reparaturergebnissen. Trotz der jüngsten Fortschritte in der T/L-Biologieforschung besteht eine der verbleibenden Herausforderungen darin, dass es im T/L-Bereich immer noch kein standardisiertes Differenzierungsprotokoll gibt, das in der Lage ist, den T/L-Bildungsprozess in vitro zu rekapitulieren. Zum Beispiel erfordert die Knochen- und Fettdifferenzierung von mesenchymalen Vorläuferzellen nur eine standardmäßige zweidimensionale (2D) Zellkultur und die Zugabe spezifischer Stimulationsmedien. Zur Differenzierung zum Knorpel ist eine dreidimensionale (3D) Pelletkultur und eine Supplementierung von TGFß notwendig. Für die Zelldifferenzierung zur Sehne ist jedoch ein sehr geordnetes 3D-Kulturmodell erforderlich, das idealerweise auch einer dynamischen mechanischen Stimulation unterzogen werden kann. Wir haben ein 3-stufiges Organoidmodell (Expansion, Stimulation und Reifung) etabliert, um eine 3D-stäbchenartige Struktur aus einem selbstorganisierten Zellblatt zu bilden, das eine natürliche Mikroumgebung mit eigenen EZM-, autokrinen und parakrinen Faktoren liefert. Diese stäbchenartigen Organoide haben eine mehrschichtige zelluläre Architektur innerhalb einer reichhaltigen EZM und können recht einfach gehandhabt werden, um statischer mechanischer Belastung ausgesetzt zu werden. Hier haben wir das 3-Stufen-Protokoll anhand von kommerziell erhältlichen dermalen Fibroblasten demonstriert. Wir konnten zeigen, dass dieser Zelltyp robuste und EZM-reiche Organoide bildet. Das beschriebene Verfahren kann hinsichtlich der Nährmedien weiter optimiert und in Richtung dynamischer axial-mechanischer Stimulation optimiert werden. Auf die gleiche Weise können alternative Zellquellen auf ihr Potenzial getestet werden, T/L-Organoide zu bilden und so eine T/L-Differenzierung zu durchlaufen. Zusammenfassend lässt sich sagen, dass der etablierte 3D-T/L-Organoid-Ansatz als Modell für die Sehnengrundlagenforschung und sogar für das gerüstfreie T/L-Engineering verwendet werden kann.
Sehnen und Bänder (T/L) sind wichtige Bestandteile des Bewegungsapparates, die dem Körper wesentliche Unterstützung und Stabilität bieten. Trotz ihrer entscheidenden Rolle ist dieses Bindegewebe anfällig für Degeneration und Verletzungen, was zu Schmerzen und Einschränkungen der Beweglichkeit führt1. Darüber hinaus können ihre eingeschränkte Blutversorgung und ihre langsame Heilungsfähigkeit zu chronischen Verletzungen führen, während Faktoren wie Alterung, wiederholte Bewegungen und unsachgemäße Rehabilitation das Risiko von Degeneration und Verletzungen weiter erhöhen2. Konventionelle Behandlungen wie Ruhe, Physiothera....
HINWEIS: Alle Schritte müssen mit aseptischen Techniken durchgeführt werden.
1. Kultur und Vorausbau von NHDFs
Das 3D-T/L-Organoidmodell wurde zuvor etabliert und hier durch die Implementierung von kommerziell erworbenem NHDF demonstriert (n=3, 3 Organoide pro Spender, NHDF wurden in den Passagen 5-8 verwendet). Der Modell-Workflow ist in Abbildung 1 zusammengefasst. Abbildung 2 zeigt repräsentative Phasenkontrastbilder der NHDF-Kultur während der Vorexpansion in T-75-Kolben (Abbildung 2A) sowie zu Beginn und nach 5 Tagen Kultur im 2D-Expa.......
Die in dieser Studie gezeigten Ergebnisse liefern wertvolle Einblicke in die Etablierung und Charakterisierung des NHDF 3D-Organoidmodells zur Untersuchung von T/L-Geweben. Das 3-Stufen-Protokoll führte zur Bildung von 3D-stäbchenförmigen Organoiden, die typische Merkmale der T/L-Nische aufweisen. Dieses Modell wurde bereits in Kroner-Weigl et al. 20237 berichtet und hier sehr detailliert demonstriert.
Die Phasenkontrastbilder in Abbildu.......
Die Autoren haben keine Interessenkonflikte anzugeben.
D.D. und S.M.-D. Würdigung der BMBF-Förderung "CellWiTaL: Reproduzierbare Zellsysteme für die Wirkstoffforschung - Transferschichtfreier Laserdruck hochspezifischer Einzelzellen in dreidimensionalen zellulären Strukturen" Antrag Nr. 13N15874. D.D. und V.R.A. würdigen das EU MSCA-COFUND Grant OSTASKILLS "Holistic training of next-generation Osteoarthritis researches" GA Nr. 101034412. Alle Autoren danken Frau Beate Geyer für ihre technische Unterstützung.
....Name | Company | Catalog Number | Comments |
Ascorbic acid | Sigma-Aldrich, Taufkirchen,Germany | A8960 | |
10 cm adherent cell culture dish | Sigma-Aldrich, Taufkirchen,Germany | CLS430167 | |
10 cm non-adherent petri dish | Sigma-Aldrich, Taufkirchen,Germany | CLS430591 | |
Cryo-medium | Tissue-Tek, Sakura Finetek, Alphen aan den Rijn, Netherlands | 4583 | |
Cryomold standard | Tissue-Tek, Sakura Finetek, Alphen aan den Rijn, Netherlands | 4557 | |
D(+)-Sucrose | AppliChem Avantor VWR International GmbH, Darmstadt, Germany | A2211 | |
DMEM high glucose medium | Capricorn Scientific, Ebsdorfergrund, Germany | DMEM-HA | |
DMEM low glucose | Capricorn Scientific, Ebsdorfergrund, Germany | DMEM-LPXA | |
Fetal bovine serum | Anprotec, Bruckberg, Germany | AC-SM-0027 | |
Fibroblast growth medium 2 | PromoCell, Heidelberg, Germany | C-23020 | |
Inverted microscope with high resolution camera | Zeiss | NA | Zeiss Axio Observer with Axiocam 506 |
MEM amino acids | Capricorn Scientific, Ebsdorfergrund, Germany | NEAA-B | |
Metal pins | EntoSphinx, Pardubice, Czech Republic | 04.31 | |
Normal human dermal fibroblasts | PromoCell, Heidelberg, Germany | C-12302 | |
Paraformaldehyde | AppliChem, Sigma-Aldrich, Taufkirchen, Germany | A3813 | |
Penicillin/streptomycin | Gibco, Thermo Fisher Scientific, Darmstadt, Germany | 15140122 | |
Phosphate buffer saline | Sigma-Aldrich, Taufkirchen, Germany | P4417 | |
TGFß3 | R&D Systems, Wiesbaden, Germany | 8420-B3 | |
Trypsin-EDTA 0,05% DPBS | Capricorn Scientific, Ebsdorfergrund, Germany | TRY-1B |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten