Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
We describe here a relatively fast and simple approach for mapping genome-wide mammalian replication timing, from cell isolation to the basic analysis of the sequencing results. A genomic map of a representative replication program will be provided following the protocol.
La replicación del genoma se produce durante la fase S del ciclo celular en un proceso altamente regulado que asegura la fidelidad de la duplicación del ADN. Cada región genómica se replica en un momento distinto durante la fase S a través de la activación simultánea de múltiples orígenes de replicación. Tiempo de replicación (TdR) se correlaciona con muchas características genómicas y epigenéticos y está vinculada a las tasas de mutación y cáncer. La comprensión de la vista genómico completo del programa de réplica, en la salud y la enfermedad es un importante objetivo futuro y desafío.
En este artículo se describe en detalle la "Relación de número de copia S / G1 para el mapeo genómico Tiempo de replicación" método (denominado en el presente documento: CNR-TdR), un enfoque simple para mapear el genoma amplia TdR de células de mamíferos. El método se basa en las diferencias de número de copias entre las células de fase S y las células en fase G1. El método CNR-TdR se lleva a cabo en 6 pasos: 1. Preparación de las células y la tinción con yoduro de propidio (PI); 2. Sorting G1 y células en fase S utilizando células activadas por fluorescencia (FACS); 3. purificación de ADN; 4. La sonicación; 5. Preparación y secuenciación Biblioteca; y 6. El análisis bioinformático. El método CNR-TdR es un método rápido y fácil que resulta en mapas detallados de replicación.
la replicación del ADN de los mamíferos está estrechamente regulada para asegurar la replicación precisa de cada cromosoma exactamente una vez durante el ciclo celular. La replicación se realiza de acuerdo con un orden altamente regulado - varias grandes regiones genómicas (~ Mb) se replican en el inicio de la fase S (a principios de replicar dominios), mientras que otras regiones genómicas replican luego en (dominios medias y replicar tarde) medio o fase S tardía 1. La mayor parte del genoma se replica al mismo tiempo en todos los tejidos (dominios TdR constitutivo), mientras que 30% - 50% del genoma, cambia su TdR entre los tejidos 2, durante la diferenciación de 3, 4 y en menor medida también durante la transformación del cáncer 5 . Por otra parte, ciertas regiones genómicas se replican de forma asíncrona 6, 7, 8, es decir, hay una diferenciaen los términos de referencia entre los dos alelos.
TdR se correlaciona con muchas características genómicas y epigenómicos incluyendo los niveles de transcripción, contenido de GC, el estado de la cromatina, la densidad de genes, etc. 1, 9. TdR también se asocia con tasas de mutación y los tipos 10, 11 y por lo tanto era de esperar, perturbaciones del programa de réplica están ligados al cáncer 12, 13. La relación causal entre TdR y la estructura de la cromatina todavía no se entiende. Es posible que la cromatina abierta facilita la replicación temprana. Sin embargo, un modelo alternativo sugiere que la cromatina se monta durante la replicación y los diferentes reguladores de la cromatina presentes en el inicio y final de adelanto de fase S a diferencial de embalaje de las regiones de replicación temprana y tardía 1, 14 . Recientemente hemos demostrado que los TdR da forma al contenido de GC al afectar el tipo de mutaciones que se producen en diferentes regiones genómicas 11.
Hibridación in situ fluorescente (FISH) es el principal método para la medición de TdR en loci individual. Se lleva a cabo simplemente contando el porcentaje de células en fase S que exhiben las señales de FISH individuales vs. el porcentaje de dobletes para un determinado alelo 15, 16. Un método alternativo, se compone de pulso etiquetado de ADN con BrdU, las células de clasificación de acuerdo con su contenido de ADN a múltiples puntos de tiempo a lo largo de S, la inmunoprecipitación de ADN que contiene BrdU, y la comprobación de la abundancia de ADN precipitado con qPCR 17.
mapeo TdR genómico se puede lograr mediante dos métodos. El primer método es una versión genómica del método basado en BrdU-IP se ha descrito anteriormente, en el que la cuantificación de la cantidadde ADN precipitado en cada fracción se realiza de forma simultánea para todo el genoma a través de la hibridación de microarrays o por secuenciación profunda. El segundo método, CNR-TdR, se basa en medir el número de copias de cada región genómica de células en fase S y la normalización por el contenido de ADN en las células G1. En este método, las células están ordenados por FACS en no replicante (fase G1) y replicar (fase S) grupos (Figura 1). Las células en G1 tienen el mismo número de copias de todas las regiones genómicas y por lo tanto su contenido de ADN deben ser los mismos. Por otro lado, el número de copias de ADN en S depende de la TdR, ya que las regiones de replicación primeros se sometieron a la replicación en la mayoría de las células y por lo tanto su contenido de ADN se duplica, mientras que las regiones de replicación finales no se han replicado todavía en la mayoría de las células y por lo tanto su contenido de ADN se ser similar a la de las células G1. Por lo tanto la S a la proporción de G1 del contenido de ADN es indicativa de la TdR. La cantidad de ADN para cada región genómica se mide por hibridación amicroarrays o mediante secuenciación profunda 2, 8. Se discutirán además las ventajas del método CNR-TdR.
Este artículo describe el método de CNR-TdR para el mapeo genómico TdR como se describe en la Figura 2. El documento analiza los detalles finos de todo el proceso desde la recolección de células hasta que el análisis básico de los resultados y la creación de mapas genómicos Tor. El protocolo descrito en este documento se ha realizado con éxito en diversos tipos de células que crecen en cultivo. Mejoras futuras de este protocolo pueden dar lugar a la asignación de los TdR in vivo e in tipos de células raras.
Nota: TdR se puede medir sólo en cultivo, las células no sincronizadas. El procedimiento debe comenzar con al menos 1 - 2 x 10 6 células de crecimiento rápido, que dará lugar generalmente a ~ 1 x 10 5 células en fase S (el paso limitante de la velocidad). Se recomienda llevar a cabo cada experimento usando dos o tres repeticiones. Todo el proceso de CNR-TdR se puede completar en una semana - dos días deben estar dedicados a todos los pasos hasta la preparación de la biblioteca, se necesitan uno o dos días para la secuenciación y es necesario un día adicional para el análisis de datos inicial.
1. Recolección de células de Cultura
NOTA: El protocolo está escrito para las células que crecen en cultivo en placas de 10 cm (que contenían aproximadamente 2 - 5 x 10 6 células), pero se puede ajustar fácilmente a otras plataformas.
2. Fijación
NOTA: Para esta parte, todas las medidas se debe hacer a 4 ° C.
3. La tinción PI
4. Ordenar
Figura 1. determinación de la fase del ciclo celular basada en la intensidad de PI. Histograma que muestra la distribución del contenido de ADN celular (medida por PI-Area) de ratón fibroblastos de embriones de población (MEF). El contenido de ADN se utiliza para clasificar la población en dos subpoblaciones i) células G1 (contenido de ADN 2N) y ii) las células en fase S (2N - contenido de ADN 4N), usando las regiones marcadas. Haga clic aquí para ver una versión más grande de esta figura.
NOTA: La finalidad de la recogida de las células G1 es dar cuenta de sesgos en la eficiencia de la secuenciación entre diferentes regiones genómicas. Una aplicación alternativaRoach es utilizar células detenidas G1 del mismo tipo de células. Este enfoque da resultados más limpios (ya que minimiza la contaminación de la fase S), pero puede introducir sesgos derivados de las diferencias genéticas entre las células detenidas y las células de medición.
5. Purificación de ADN
6. La sonicación
7. Biblioteca Preparación y secuenciación
NOTA: Muchos kits de preparación de la biblioteca y difierenplataformas de secuenciación tes deben funcionar de manera similar a los utilizados por nosotros y que se mencionan en la sección de materiales. En realidad, en el pasado, mapas TdR se generaron utilizando un método muy similar con plataformas de microarrays 2.
8. Análisis
NOTA: El análisis de datos se basa en el método utilizado por A. Koren et al. 19.
Un mapa típico TdR se muestra en la Figura 3 para los fibroblastos embrionarios de ratón (MEFs). Esta figura demuestra el proceso de análisis, ya que muestra tanto los puntos, que son la razón normalizada / G1 S para las ventanas individuales (paso 8.3), así como la línea que resulta de la suavización cúbico y la interpolación (paso 8.5).
Tales mapas capturan la organización del programa de replicaci...
CNR-TdR se puede realizar, en principio, en cualquier población de células en proliferación eucariota que puede ser dividido por FACS a S y fases G1 (revisado por Rhind N. y Gilbert DM 20). El método descrito aquí se ha ajustado a células de mamífero con un tamaño de genoma de ~ 3 Gb tales como humanos y de ratón. se necesitan pequeños cambios en el protocolo CNR-TdR (en preparación de células y la profundidad de secuenciación), con el fin de ajustarla a otros eucariotas. Se debe pre...
No conflicts of interest declared.
Agradecemos a Oriya Vardi de asistencia en la producción de las figuras. El trabajo del grupo se fue apoyado por la Fundación de Ciencias de Israel (subvención Nº 567/10) y el Consejo Europeo de Investigación subvenciones de inicio (# 281306).
Name | Company | Catalog Number | Comments |
PBS | BI (Biological Industries) | 02-023-1A | |
Trypsin-EDTA | BI (Biological Industries) | 03-052-1B | |
15 mL conical tube | Corning | 430790 | |
5 mL Polystyrene round Bottom tube with cell strainer cap | BD-Falcon | 352235 | |
Ethanol | Gadot | 64-17-5 | |
RNAse-A 10 mg/mL | Sigma | R4875 | |
Propidiom iodide 1 mg/mL | Sigma | P4170 | |
Parafilm | Parafilm | PM-996 | |
1.5 mL DNA LoBind Eppendorf tubes | Eppendorf | 22431021 | |
BSA | Sigma | A7906 | |
1.7 mL MaxyClear tube | Axygen | MCT-175-C | |
magnetic beads - Agencourt AMPure XP | Beckman Coulter | A63881 | |
Ultrasonicator | Covaris | M-series -530092 | |
50 µL microTUBE AFA Fiber Screw-Cap 6 x 16 mm | Covaris | 520096 | |
Qubit fluorometer | Invitrogen | ||
Qubit dsDNA High Sensitivity (HS) Assay Kit | Invitrogen | Q32854 | |
Electrophoresis 2200 Tape station system | Agilent | D1000 ScreenTape | |
Seqeuncing - Illumina NextSeq system | Illumina | SY-415-1001 | |
Dneasy kit for DNA purification | Qiagen | 69504 | |
PureProteom Magnetic Stand | Millipore | LSKMAGS08 | |
Anti-BrdU/FITC | DAKO | F7210 | |
FACS sorter | BD | FACSARIA III | |
FACS software | BD | FACSDiva v 8.0.1 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados