Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Aquí, se presenta un protocolo simple para producir nanopartículas de ARNm basadas en polímeros de poli(beta aminoéster), fáciles de adaptar cambiando el ARNm encapsulado. También se describe el flujo de trabajo para sintetizar los polímeros, las nanopartículas y su caracterización esencial in vitro. También se agrega una prueba de concepto con respecto a la inmunización.
La vacunación ha sido uno de los mayores éxitos de la sociedad moderna y es indispensable para controlar y prevenir enfermedades. Las vacunas tradicionales estaban compuestas por enteros o fracciones del agente infeccioso. Sin embargo, siguen existiendo desafíos y las nuevas tecnologías de vacunación son obligatorias. En este contexto, el uso de ARNm con fines de inmunización ha demostrado un mejor rendimiento, como lo demuestra la rápida aprobación de dos vacunas de ARNm que previenen la infección por SARS-CoV-2. Más allá del éxito en la prevención de infecciones virales, las vacunas de ARNm también se pueden utilizar para aplicaciones terapéuticas contra el cáncer.
Sin embargo, la inestabilidad del ARNm y su rápida eliminación del cuerpo debido a la presencia de nucleasas hace que su entrega desnuda no sea posible. En este contexto, las nanomedicamentos, y específicamente las nanopartículas poliméricas, son sistemas críticos de administración de ARNm. Por lo tanto, el objetivo de este artículo es describir el protocolo para la formulación y prueba de un candidato a vacuna de ARNm basado en las nanopartículas poliméricas patentadas. La síntesis y caracterización química de los polímeros poli(beta aminoésteres) utilizados, su complejación con ARNm para formar nanopartículas y su metodología de liofilización se discutirán aquí. Este es un paso crucial para disminuir los costos de almacenamiento y distribución. Por último, se indicarán las pruebas necesarias para demostrar su capacidad de transfectar in vitro y madurar células dendríticas modelo. Este protocolo beneficiará a la comunidad científica que trabaja en la vacunación debido a su alta versatilidad que permite a estas vacunas prevenir o curar una amplia variedad de enfermedades.
Las enfermedades infecciosas han representado una grave amenaza para millones de seres humanos en todo el mundo y siguen siendo una de las principales causas de muerte en algunos países en desarrollo. La vacunación profiláctica ha sido una de las intervenciones más eficaces de la sociedad moderna para prevenir y controlar las enfermedadesinfecciosas1,2. Estos hitos críticos de la ciencia en relevancia del sigloXXhan sido señalados por la reciente pandemia mundial de Covid-19 causada por el virus SARS-CoV-23. Reconociendo la importancia de contar con vacunas eficientes para re....
1. Síntesis de polímero pBAE con oligopéptidos finales (OM-pBAE)
Síntesis y caracterización de polímeros
El procedimiento de síntesis OM-pBAE se da en la Figura 2. Como muestra la Figura 2A, el primer paso para obtener el OM-pBAE es sintetizar el C6-pBAE añadiendo las aminas (1-hexilamina y 5-amino-1-pentanol, relación 1:1) al diacrilato (diacrilato de 1,4-butanodiol). Esta reacción se lleva a cabo a 90 °C durante 20 h y con agitación constante. Posteriormente, se añade una solución de oligopép.......
Después del brote de la pandemia de Covid-19 el año pasado, la importancia de las vacunas en términos de control de enfermedades infecciosas se ha manifestado como un componente crítico8. Los esfuerzos de científicos de todo el mundo han permitido el lanzamiento al mercado de muchas vacunas. Por primera vez en la historia, las vacunas de ARNm han demostrado su éxito previamente hipotético, gracias a su rápido diseño debido a su capacidad para adaptarse a cualquier antígeno nuevo en unos<.......
Los autores no tienen nada que revelar ni ningún conflicto de intereses.
Se agradece el apoyo financiero del MINECO/FEDER (subvenciones SAF2015-64927-C2-2-R, RTI2018-094734-B-C22 y COV20/01100). CGF reconoció su beca de doctorado IQS.
....Name | Company | Catalog Number | Comments |
1,4-butanediol diacrylate | Sigma Aldrich | 123048 | |
1-hexylamine | Sigma Aldrich | 219703 | |
5-amino-1-pentanol | Sigma Aldrich | 411744 | |
Acetone | Panreac | 141007 | |
CD11b antibody | BD | 550993 | |
CD86 antibody | Bioligend | 105007 | |
Chlor hydroxhyde | Panreac | 181023 | |
Chloroform-d | Sigma Aldrich | 151823 | |
Cys-His-His-His peptide | Ontores | Custom | |
Cys-Lys-Lys-Lys peptide | Ontores | Custom | |
D2O | Sigma Aldrich | 151882 | |
DEPC reagent for Rnase free water | Sigma Aldrich | D5758 | This reagent is important to treat MilliQ water to remove any RNases of the buffers |
Diethyl eter | Panreac | 212770 | |
dimethyl sulfoxide | Sigma Aldrich | 276855 | |
HEPES | Sigma Aldrich | H3375 | |
mRNA EGFP | TriLink Technologies | L-7601 | |
mRNA OVA | TriLink Technologies | L-7610 | |
RiboGreen kit | ThermoFisher | R11490 | |
sodium acetate | Sigma Aldrich | 71196 | |
sucrose | Sigma Aldrich | S0389 | |
Trifluoroacetic acid | Sigma Aldrich | 302031 | |
Trypsin-EDTA | Fisher Scientific | 11570626 | |
α-mouse AlexaFluor488 antibody | Abcam | Ab450105 | |
Equipment | |||
Nanoparticle Tracking Analyzer | Malvern Panalytical | NanoSight NS300 | |
Nuclear Magnetic Ressonance Spectrometer | Varian | 400 MHz | |
ZetaSizer | Malvern Panalytical | Nano ZS | For zeta potential and hydrodynamic size determination |
Software | |||
NanoSight NTA software | Malvern Panalytical | MAN0515-02-EN-00 | |
NovoExpress Software | Agilent | Not specified | |
ZetaSizer software | Malvern Panalytical | DTS Application | To analyze surface charge and hydrodynamic sizes |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados