Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Aquí se introducen varios métodos de uso común para estudiar los eventos de tráfico de membrana de una quinasa receptora de membrana plasmática. Este manuscrito describe protocolos detallados que incluyen la preparación del material vegetal, el tratamiento farmacológico y la configuración de imágenes confocales.
En las células eucariotas, los componentes de la membrana, incluidas las proteínas y los lípidos, se transportan espacio-temporalmente a su destino dentro del sistema de endomembranas. Esto incluye el transporte secretor de proteínas recién sintetizadas a la superficie celular o al exterior de la célula, el transporte endocítico de cargas extracelulares o componentes de la membrana plasmática dentro de la célula, y el transporte de reciclaje o transporte de cargas entre los orgánulos subcelulares, etc. Los eventos de tráfico de membrana son cruciales para el desarrollo, el crecimiento y la adaptación ambiental de todas las células eucariotas y, por lo tanto, están sujetos a una estricta regulación. Las quinasas receptoras de la superficie celular, que perciben las señales de ligandos del espacio extracelular, experimentan tanto el transporte secretor como el endocítico. Aquí se describen los enfoques comúnmente utilizados para estudiar los eventos de tráfico de membrana utilizando una quinasa receptora de repetición rica en leucina localizada en la membrana plasmática, ERL1. Los enfoques incluyen la preparación del material vegetal, el tratamiento farmacológico y la configuración de imágenes confocal. Para monitorizar la regulación espacio-temporal de ERL1, en este estudio se describe el análisis de colocalización entre ERL1 y una proteína marcador corporal multivesicular, RFP-Ara7, el análisis de series temporales de estas dos proteínas y el análisis de la pila z de ERL1-YFP tratada con los inhibidores del tráfico de membrana brefeldina A y wortmannina.
El tráfico de membrana es un proceso celular conservado que distribuye los componentes de la membrana (también conocidos como cargas), incluidas proteínas, lípidos y otros productos biológicos, entre diferentes orgánulos dentro de una célula eucariota o a través de la membrana plasmática hacia y desdeel espacio extracelular. Este proceso es facilitado por una colección de membranas y orgánulos denominada sistema de endomembranas, que consiste en la membrana nuclear, el retículo endoplásmico, el aparato de Golgi, las vacuolas/lisosomas, la membrana plasmática y múltiples endosomas1. El sistema de endomembranas permite la modificación, el empaquetado y el transporte de los componentes de la membrana mediante vesículas dinámicas que se desplazan entre estos orgánulos. Los eventos de tráfico de membranas son cruciales para el desarrollo, el crecimiento y la adaptación ambiental de las células y, por lo tanto, están sujetos a una regulación estricta y compleja2. En la actualidad, se han desarrollado y aplicado múltiples enfoques en biología molecular, biología química, microscopía y espectrometría de masas al campo del tráfico de membranas y han avanzado enormemente en la comprensión de la regulación espacio-temporal del sistema de endomembranas 3,4. La biología molecular se utiliza para las manipulaciones genéticas clásicas de los supuestos actores implicados en el tráfico de membranas, como la alteración de la expresión génica de la proteína de interés o el etiquetado de la proteína de interés con ciertas etiquetas. Las herramientas de la biología química incluyen el uso de moléculas que interfieren específicamente con el tráfico de ciertas rutas 4,5. La espectrometría de masas es potente para identificar los componentes de un orgánulo que ha sido aislado mecánicamente por aproximaciones bioquímicas 3,4. Sin embargo, el tráfico de membranas es un proceso biológico dinámico, diverso y complejo1. Para visualizar el proceso de tráfico de membranas en células vivas en diversas condiciones, la microscopía óptica es una herramienta esencial. Se ha avanzado continuamente en las técnicas avanzadas de microscopio para superar los desafíos en la medición de la eficiencia, cinética y diversidad de los eventos4. Aquí, este estudio se centra en las metodologías ampliamente adoptadas en biología química/farmacológica, biología molecular y microscopía para estudiar los eventos de tráfico de membrana en un sistema naturalmente simplificado y experimentalmente accesible, el proceso de desarrollo de estomas.
Los estomas son microporos en las superficies aéreas de las plantas que se abren y cierran para facilitar el intercambio de gases entre las células internas y el medio ambiente 6,7,8. Por lo tanto, los estomas son esenciales para la fotosíntesis y la transpiración, dos eventos que son cruciales para la supervivencia y el crecimiento de las plantas. El desarrollo de los estomas se ajusta dinámicamente mediante señales ambientales para optimizar la adaptación de la planta al entorno9. La identificación de la proteína receptora Too Many Mouths (TMM) abrió la puerta a una nueva era de investigación de los mecanismos moleculares del desarrollo estomatológico en la planta modelo Arabidopsis thaliana10. Después de unas pocas décadas, se ha identificado una vía de señalización clásica. De arriba a abajo, esta vía incluye un grupo de ligandos de péptidos secretores de la familia de los factores de patrón epidérmico (EFP), varias quinasas del receptor de repeticiones ricas en leucina (LRR) de la superficie celular de la familia EREECTA (ER), la proteína del receptor LRR TMM, una cascada de MAPK y varios factores de transcripción de bHLH, incluidos SPEECHLESS (SPCH), MUTE, FAMA y SCREAM (SCRM)11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26. Trabajos previos indican que uno de los receptores quinasas, ER-LIKE 1 (ERL1), demuestra comportamientos subcelulares activos sobre la percepción de EPF20. ERL2 también transita dinámicamente entre la membrana plasmática y algunos orgánulos intracelulares27. El bloqueo de los pasos de tráfico de membrana causa un patrón estomático anormal, lo que resulta en grupos de estomas en la superficie de la hoja28. Estos resultados sugieren que el tráfico de membranas juega un papel esencial en el desarrollo de los estomas. En este estudio se describe un protocolo para investigar espacio-temporalmente la dinámica de ERL1 mediante el análisis de colocalización subcelular proteína-proteína combinado con el tratamiento farmacológico mediante algunos inhibidores del tráfico de membrana.
1. Preparación de las soluciones
2. Sembrando las semillas
3. Preparación de plantas transgénicas F1 de dos colores
4. Tratamiento farmacológico
Figura 1: Dispositivo de vacío simple. Se conecta una jeringa de 10 ml a un tubo de microcentrífuga de 1,5 ml para el tratamiento al vacío. Haga clic aquí para ver una versión más grande de esta figura.
5. Preparación de la muestra para la obtención de imágenes
6. Imágenes confocales
NOTA: Se utilizó un microscopio confocal de barrido invertido Leica SP8 para obtener imágenes de la señal de fluorescencia de las muestras de este trabajo.
Figura 2: El panel de modo de escaneo de la dimensión XY. El panel de modo de escaneo se utiliza para configurar las condiciones de escaneo de la imagen. Haga clic aquí para ver una versión más grande de esta figura.
Figura 3: La utilidad de serie temporal en el modo de escaneo xyt. La utilidad de serie temporal se utiliza para configurar las condiciones de imagen para recopilar consecutivamente una serie de imágenes. Haga clic aquí para ver una versión más grande de esta figura.
Figura 4: La utilidad z-stack en el modo de escaneo xyz. La utilidad z-stack se utiliza para configurar las condiciones de imagen para recopilar una serie de imágenes en el eje z. Haga clic aquí para ver una versión más grande de esta figura.
Un estudio previo indicó que ERL1 es un receptor quinasa activo que experimenta eventos dinámicos de tráfico de membrana20. ERL1 es una quinasa transmembrana del receptor LRR en la membrana plasmática. La ERL1 recién sintetizada en el retículo endoplásmico se procesa en los cuerpos de Golgi y se transporta posteriormente a la membrana plasmática. Las moléculas ERL1 de la membrana plasmática pueden percibir ligandos EPF utilizando su dominio18 LRR extracelular. Tra...
El sistema de endomembranas separa el citoplasma de una célula eucariota en diferentes compartimentos, lo que permite la función biológica especializada de estos orgánulos. Para llevar las proteínas de carga y las macromoléculas a su destino final en el momento adecuado, se guían numerosas vesículas para que se transporten entre estos orgánulos. Los eventos de tráfico de membranas altamente regulados juegan un papel fundamental en la viabilidad, el desarrollo y el crecimiento de las células. El mecanismo que r...
Los autores declaran no tener conflictos de intereses.
Este trabajo fue apoyado por la Fundación Nacional de Ciencias (IOS-2217757) (X.Q.) y el Premio de la Fundación Bronson de la Universidad de Arkansas para Ciencias Médicas (UAMS) (H.Z.).
Name | Company | Catalog Number | Comments |
10 mL syringes | VWR | BD309695 | Vacuum samples |
Brefeldin A (BFA) | Sigma | B7651 | membrane trafficking drug |
Confocal Microscope | Leica | Lecia SP8 TCS with LAS-X software package | Imaging |
Dissecting Forceps | VWR | 82027-402 | Genetic cross |
Fiji | NIH | https://imagej.net/Fiji | Image processing |
Leica LAS AF software | Leica | http://www.leica-microsystems.com | Image processing |
transgenic seeds of ERL1-YFP | Qi, X. et al. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. Elife. 9, doi:10.7554/eLife.58097, (2020). | ||
transgenic seeds of RFP-Ara7 | Ebine, K. et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol. 13 (7), 853-859, doi:10.1038/ncb2270, (2011). | ||
Wortmannin (Wm) | Sigma | W1628 | membrane trafficking drug |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados