Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Nickel hydroxide nanosheets are synthesized by a microwave-assisted hydrothermal reaction. This protocol demonstrates that the reaction temperature and time used for microwave synthesis affects the reaction yield, crystal structure, and local coordination environment.
A protocol for rapid, microwave-assisted hydrothermal synthesis of nickel hydroxide nanosheets under mildly acidic conditions is presented, and the effect of reaction temperature and time on the material's structure is examined. All reaction conditions studied result in aggregates of layered α-Ni(OH)2 nanosheets. The reaction temperature and time strongly influence the structure of the material and product yield. Synthesizing α-Ni(OH)2 at higher temperatures increases the reaction yield, lowers the interlayer spacing, increases crystalline domain size, shifts the frequencies of interlayer anion vibrational modes, and lowers the pore diameter. Longer reaction times increase reaction yields and result in similar crystalline domain sizes. Monitoring the reaction pressure in situ shows that higher pressures are obtained at higher reaction temperatures. This microwave-assisted synthesis route provides a rapid, high-throughput, scalable process that can be applied to the synthesis and production of a variety of transition metal hydroxides used for numerous energy storage, catalysis, sensor, and other applications.
Nickel hydroxide, Ni(OH)2, is used for numerous applications including nickel-zinc and nickel-metal hydride batteries1,2,3,4, fuel cells4, water electrolyzers4,5,6,7,8,9, supercapacitors4, photocatalysts4, anion exchangers10, and many other ....
NOTE: The schematic overview of the microwave synthesis process is presented in Figure 1.
1. Microwave synthesis of α-Ni(OH)2 nanosheets
Influence of reaction temperature and time on the synthesis of α-Ni(OH)2
Before the reaction, the precursor solution [Ni(NO3)2 · 6 H2O, urea, ethylene glycol, and water] is a transparent green color with a pH of 4.41 ± 0.10 (Figure 2A and Table 1). The temperature of the microwave reaction (either 120 °C or 180 °C) influences the in situ reaction pressure and color of the sol.......
Microwave synthesis provides a route to generate Ni(OH)2 that is significantly faster (13-30 min reaction time) relative to conventional hydrothermal methods (typical reaction times of 4.5 h)38. Using this mildly acidic microwave synthesis route to produce ultrathin α-Ni(OH)2 nanosheets, it is observed that reaction time and temperature influence the reaction pH, yields, morphology, porosity, and structure of the resulting materials. Using an in situ reaction pr.......
S.W.K. and C.P.R. gratefully acknowledge support from the Office of Naval Research Navy Undersea Research Program (Grant No. N00014-21-1-2072). S.W.K. acknowledges support from the Naval Research Enterprise Internship Program. C.P.R and C.M. acknowledge support from the National Science Foundation Partnerships for Research and Education in Materials (PREM) Center for Intelligent Materials Assembly, Award No. 2122041, for analysis of the reaction conditions.
....Name | Company | Catalog Number | Comments |
ATR-FTIR | Bruker | Tensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory | |
Bath sonicator | Fisher Scientific | 15-337-409 | -- |
Ethanol | VWR analytical | AC61509-0040 | 200 proof |
Ethylene Glycol | VWR analytical | BDH1125-4LP | 99% purity |
Falcon Centrifuge tubes | VWR analytical | 21008-940 | 50 mL |
KimWipes | VWR analytical | 21905-026 | -- |
Lab Quest 2 | Vernier | LABQ2 | -- |
Microwave Reactor | Anton Parr | 165741 | Monowave 450 |
Ni(NO3)2 · 6 H2O | Ward's Science | 470301-856 | Research lab grade |
pH Probe | Vernier | PH-BTA | Calibrated vs standard pH solutions (pH= 4, 7, 11) |
Porosemeter | Micromeritics | -- | ASAP 2020. Analysis software: Micromeritics, version 4.03 |
Powder x-ray diffactometer | Bruker | AXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software. | |
Reaction vial | Anton Parr | 82723 | 30 mL G30 wideneck, 20 mL max fill capacity |
Reaction vial locking lid | Anton Parr | 161724 | G30 Snap Cap |
Reaction vial PTFE septum | Anton Parr | 161728 | Wideneck |
Scanning electron microscope | FEI | -- | Helios Nanolab 400 |
Urea | VWR analytical | BDH4602-500G | ACS grade |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados