Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Nickel hydroxide nanosheets are synthesized by a microwave-assisted hydrothermal reaction. This protocol demonstrates that the reaction temperature and time used for microwave synthesis affects the reaction yield, crystal structure, and local coordination environment.

Abstract

A protocol for rapid, microwave-assisted hydrothermal synthesis of nickel hydroxide nanosheets under mildly acidic conditions is presented, and the effect of reaction temperature and time on the material's structure is examined. All reaction conditions studied result in aggregates of layered α-Ni(OH)2 nanosheets. The reaction temperature and time strongly influence the structure of the material and product yield. Synthesizing α-Ni(OH)2 at higher temperatures increases the reaction yield, lowers the interlayer spacing, increases crystalline domain size, shifts the frequencies of interlayer anion vibrational modes, and lowers the pore diameter. Longer reaction times increase reaction yields and result in similar crystalline domain sizes. Monitoring the reaction pressure in situ shows that higher pressures are obtained at higher reaction temperatures. This microwave-assisted synthesis route provides a rapid, high-throughput, scalable process that can be applied to the synthesis and production of a variety of transition metal hydroxides used for numerous energy storage, catalysis, sensor, and other applications.

Introduction

Nickel hydroxide, Ni(OH)2, is used for numerous applications including nickel-zinc and nickel-metal hydride batteries1,2,3,4, fuel cells4, water electrolyzers4,5,6,7,8,9, supercapacitors4, photocatalysts4, anion exchangers10, and many other ....

Protocol

NOTE: The schematic overview of the microwave synthesis process is presented in Figure 1.

1. Microwave synthesis of α-Ni(OH)2 nanosheets

  1. Preparation of precursor solution
    1. Prepare the precursor solution by mixing 15 mL of ultrapure water (≥18 MΩ-cm) and 105 mL of ethylene glycol. Add 5.0 g of Ni(NO3)2 · 6 H2O and 4.1 g of urea to the solution and cove.......

Representative Results

Influence of reaction temperature and time on the synthesis of α-Ni(OH)2
Before the reaction, the precursor solution [Ni(NO3)2 · 6 H2O, urea, ethylene glycol, and water] is a transparent green color with a pH of 4.41 ± 0.10 (Figure 2A and Table 1). The temperature of the microwave reaction (either 120 °C or 180 °C) influences the in situ reaction pressure and color of the sol.......

Discussion

Microwave synthesis provides a route to generate Ni(OH)2 that is significantly faster (13-30 min reaction time) relative to conventional hydrothermal methods (typical reaction times of 4.5 h)38. Using this mildly acidic microwave synthesis route to produce ultrathin α-Ni(OH)2 nanosheets, it is observed that reaction time and temperature influence the reaction pH, yields, morphology, porosity, and structure of the resulting materials. Using an in situ reaction pr.......

Acknowledgements

S.W.K. and C.P.R. gratefully acknowledge support from the Office of Naval Research Navy Undersea Research Program (Grant No. N00014-21-1-2072). S.W.K. acknowledges support from the Naval Research Enterprise Internship Program. C.P.R and C.M. acknowledge support from the National Science Foundation Partnerships for Research and Education in Materials (PREM) Center for Intelligent Materials Assembly, Award No. 2122041, for analysis of the reaction conditions.

....

Materials

NameCompanyCatalog NumberComments
ATR-FTIRBrukerTensor II FT-IR spectrometer equipped with a Harrick Scientific SplitPea ATR micro-sampling accessory
Bath sonicatorFisher Scientific15-337-409--
Ethanol VWR analyticalAC61509-0040200 proof
Ethylene GlycolVWR analyticalBDH1125-4LP99% purity
Falcon Centrifuge tubesVWR analytical21008-94050 mL
KimWipesVWR analytical21905-026--
Lab Quest 2Vernier LABQ2--
Microwave ReactorAnton Parr165741Monowave 450
Ni(NO3)2 · 6 H2OWard's Science470301-856Research lab grade
pH ProbeVernier PH-BTACalibrated vs standard pH solutions (pH= 4, 7, 11)
PorosemeterMicromeritics --ASAP 2020. Analysis software: Micromeritics, version 4.03
Powder x-ray diffactometerBrukerAXS Advanced Poweder x-ray diffractometer; d-spacing, and crystallite size analyses were performed using Highscore XRD software, and crystal structures were created using VESTA 3 software.
Reaction vialAnton Parr8272330 mL G30 wideneck, 20 mL max fill capacity
Reaction vial locking lidAnton Parr161724G30 Snap Cap
Reaction vial PTFE septumAnton Parr161728Wideneck
Scanning electron microscopeFEI--Helios Nanolab 400
UreaVWR analyticalBDH4602-500GACS grade

References

  1. Liu, B., et al. 120 Years of nickel-based cathodes for alkaline batteries. Journal of Alloys and Compounds. 834, 155185 (2020).
  2. Young, K. H., et al. Fabrications of high-capacity α-Ni(OH)2. Batteries. 3....

Explore More Articles

Nickel HydroxideNanosheetsMicrowave SynthesisHydrothermal SynthesisReaction ConditionsCrystalline StructureSurface AreaPorosityReaction TemperatureReaction TimeAlpha Nickel HydroxideMetal HydroxidesMetal OxidesEnergy StorageCatalysisSensors

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados