Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a modified procedure for rapidly isolating clean stage I oocytes in zebrafish devoid of granulosa cells, thereby providing a convenient method for oocyte-specific research.

Abstract

The study of oocyte development holds significant implications in developmental biology. The zebrafish (Danio rerio) has been extensively used as a model organism to investigate early developmental processes from oocyte to embryo. In zebrafish, oocytes are surrounded by a single layer of somatic granulosa cells. However, separating granulosa cells from oocytes poses a challenge, as achieving pure oocytes is crucial for precise analysis. Although various methods have been proposed to isolate zebrafish oocytes at different developmental stages, current techniques fall short in removing granulosa cells completely, limiting the accuracy of genome analysis focused solely on oocytes. In this study, we successfully developed a rapid and efficient process for isolating pure stage I oocytes in zebrafish while eliminating granulosa cell contamination. This technique facilitates biochemical and molecular analysis, particularly in exploring epigenetic and genome structure aspects specific to oocytes. Notably, the method is user-friendly, minimizes oocyte damage, and provides a practical solution for subsequent research and analysis.

Introduction

The zebrafish is among the most important model systems in developmental biology. In recent years, numerous studies have utilized the zebrafish as a model to study important biological events and regulatory processes from oocyte to embryo. These encompass the intricate processes of oocyte development and maturation1, the functionality of maternal genes2, the regulation of maternal-zygotic transitions3, and extensive omics analyses4.

Granulosa cells, the somatic cells enveloping and nurturing the developing oocyte within the ovarian follicle

Protocol

All zebrafish were handled following stringent animal care guidelines outlined by the relevant national and/or local animal welfare bodies. The maintenance and handling of fish received approval from both local authorities and the animal ethics committee of the West China Hospital of Sichuan University (approval No. 20220422003). Zebrafish ovaries contain a mixture of multi-stage oocytes, with each developmental stage being present in adult zebrafish ovaries. However, juvenile zebrafish were selected for this study due t.......

Representative Results

Figure 1 illustrates the ovarian morphology observed in both adult and juvenile zebrafish, showcasing oocytes at different developmental stages to serve as a reference. Figure 1A provides a graphical representation of oocyte morphology and size at each developmental stage, beginning with the primary growth stage (stage I) and ending with the ovulated egg (stage V). Figures 1Ai-v illustrate the diameters corresponding to stages I to V of the oocy.......

Discussion

In this study, we developed a method for isolating pure and clean stage I oocytes, excluding granulosa cells, for downstream analysis (particularly genomic analyses). Comparing this modified method with the referenced method13, the stage I oocytes obtained using this method are morphologically intact, sufficient in number, and free from contamination with other somatic cells, making them suitable for various subsequent studies and analyses. Furthermore, compared with other mechanical separation me.......

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32170813 and 31871449) and Science and Technology Department of Sichuan (2024NSFSC0651), and 1·3·5 project for disciplines of excellence–Clinical Research Fund, West China Hospital, Sichuan University (2024HXFH035). The authors would like to thank Zhao Wang and Yanqiu Gao of the Laboratory of Pediatric Surgery for breeding of zebrafish related to this work. The authors would also like to thank all the reviewers who participated in the review, as well as MJEditor (www.mjeditor.com) for providing English editing services during the preparation of this manuscript.

....

Materials

NameCompanyCatalog NumberComments
Kinger's cell dissociation solutionPlantChemMedPC-33689Kinger's cell dissociation solution can be stored stably at -20 °C after packaging and can be used after thawing at low temperature (4 °C). It can be used directly for dissociating zebrafish ovaries. The optimal temperature is 28.5 °C, for approximately 2-3 hours. The duration can be adjusted according to the specific dissociation conditions, either shortened or extended (https://www.plantchemmed.com/chanpin?productNo=PC-33689).
Cell strainers (100 μm )Falcon352360
Fluorescence microscopeZeissAxio Zoom.V16
ForcepsDumont#5
Glass capillary needle//Blunted by burning with lighter
HoechstYesen40732ES03
Low adsorption pipette tips (10 μl )LabsellectT-0010-LR-R-S
Leibovitz’s L-15 medium medium (with L-glutamine)HycloneSH30525.01
Ice bucket//Ice-cold water is used to euthanize zebrafish
IncubatorWIGGENSWH-01
Juvenile fish//5–6 weeks post-fertilization, standard length [SL] of 10–15 mm
Plastic dish (35 mm )SORFA230101
StereomicroscopeMoticSMZ-161
Tissue Culture Plate (6-wells)SORFA0110006
Vannas spring scissorsFine Science Toosl#15000-00

References

Explore More Articles

ZebrafishOocyte DevelopmentGranulosa CellsIsolation TechniqueStage I OocytesDevelopmental BiologyGenome AnalysisBiochemical AnalysisMolecular AnalysisEpigeneticsResearch MethodologyCell ContaminationEmbryonic Development

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados