Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
This protocol describes a modified procedure for rapidly isolating clean stage I oocytes in zebrafish devoid of granulosa cells, thereby providing a convenient method for oocyte-specific research.
The study of oocyte development holds significant implications in developmental biology. The zebrafish (Danio rerio) has been extensively used as a model organism to investigate early developmental processes from oocyte to embryo. In zebrafish, oocytes are surrounded by a single layer of somatic granulosa cells. However, separating granulosa cells from oocytes poses a challenge, as achieving pure oocytes is crucial for precise analysis. Although various methods have been proposed to isolate zebrafish oocytes at different developmental stages, current techniques fall short in removing granulosa cells completely, limiting the accuracy of genome analysis focused solely on oocytes. In this study, we successfully developed a rapid and efficient process for isolating pure stage I oocytes in zebrafish while eliminating granulosa cell contamination. This technique facilitates biochemical and molecular analysis, particularly in exploring epigenetic and genome structure aspects specific to oocytes. Notably, the method is user-friendly, minimizes oocyte damage, and provides a practical solution for subsequent research and analysis.
The zebrafish is among the most important model systems in developmental biology. In recent years, numerous studies have utilized the zebrafish as a model to study important biological events and regulatory processes from oocyte to embryo. These encompass the intricate processes of oocyte development and maturation1, the functionality of maternal genes2, the regulation of maternal-zygotic transitions3, and extensive omics analyses4.
Granulosa cells, the somatic cells enveloping and nurturing the developing oocyte within the ovarian follicle
All zebrafish were handled following stringent animal care guidelines outlined by the relevant national and/or local animal welfare bodies. The maintenance and handling of fish received approval from both local authorities and the animal ethics committee of the West China Hospital of Sichuan University (approval No. 20220422003). Zebrafish ovaries contain a mixture of multi-stage oocytes, with each developmental stage being present in adult zebrafish ovaries. However, juvenile zebrafish were selected for this study due t.......
Figure 1 illustrates the ovarian morphology observed in both adult and juvenile zebrafish, showcasing oocytes at different developmental stages to serve as a reference. Figure 1A provides a graphical representation of oocyte morphology and size at each developmental stage, beginning with the primary growth stage (stage I) and ending with the ovulated egg (stage V). Figures 1Ai-v illustrate the diameters corresponding to stages I to V of the oocy.......
In this study, we developed a method for isolating pure and clean stage I oocytes, excluding granulosa cells, for downstream analysis (particularly genomic analyses). Comparing this modified method with the referenced method13, the stage I oocytes obtained using this method are morphologically intact, sufficient in number, and free from contamination with other somatic cells, making them suitable for various subsequent studies and analyses. Furthermore, compared with other mechanical separation me.......
This work was supported by the National Natural Science Foundation of China (32170813 and 31871449) and Science and Technology Department of Sichuan (2024NSFSC0651), and 1·3·5 project for disciplines of excellence–Clinical Research Fund, West China Hospital, Sichuan University (2024HXFH035). The authors would like to thank Zhao Wang and Yanqiu Gao of the Laboratory of Pediatric Surgery for breeding of zebrafish related to this work. The authors would also like to thank all the reviewers who participated in the review, as well as MJEditor (www.mjeditor.com) for providing English editing services during the preparation of this manuscript.
....Name | Company | Catalog Number | Comments |
Kinger's cell dissociation solution | PlantChemMed | PC-33689 | Kinger's cell dissociation solution can be stored stably at -20 °C after packaging and can be used after thawing at low temperature (4 °C). It can be used directly for dissociating zebrafish ovaries. The optimal temperature is 28.5 °C, for approximately 2-3 hours. The duration can be adjusted according to the specific dissociation conditions, either shortened or extended (https://www.plantchemmed.com/chanpin?productNo=PC-33689). |
Cell strainers (100 μm ) | Falcon | 352360 | |
Fluorescence microscope | Zeiss | Axio Zoom.V16 | |
Forceps | Dumont | #5 | |
Glass capillary needle | / | / | Blunted by burning with lighter |
Hoechst | Yesen | 40732ES03 | |
Low adsorption pipette tips (10 μl ) | Labsellect | T-0010-LR-R-S | |
Leibovitz’s L-15 medium medium (with L-glutamine) | Hyclone | SH30525.01 | |
Ice bucket | / | / | Ice-cold water is used to euthanize zebrafish |
Incubator | WIGGENS | WH-01 | |
Juvenile fish | / | / | 5–6 weeks post-fertilization, standard length [SL] of 10–15 mm |
Plastic dish (35 mm ) | SORFA | 230101 | |
Stereomicroscope | Motic | SMZ-161 | |
Tissue Culture Plate (6-wells) | SORFA | 0110006 | |
Vannas spring scissors | Fine Science Toosl | #15000-00 |
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados