Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Para investigar la respuesta inmunitaria a los trastornos cerebrales, un enfoque común es analizar los cambios en las células inmunitarias. Aquí, se proporcionan dos protocolos simples y efectivos para aislar células inmunitarias del tejido cerebral murino y la médula ósea del cráneo.
Cada vez hay más pruebas de que la respuesta inmunitaria desencadenada por los trastornos cerebrales (por ejemplo, isquemia cerebral y encefalomielitis autoinmunitaria) no sólo se produce en el cerebro, sino también en el cráneo. Un paso clave para analizar los cambios en las poblaciones de células inmunitarias tanto en el cerebro como en la médula ósea del cráneo después de un daño cerebral (por ejemplo, un accidente cerebrovascular) es obtener un número suficiente de células inmunitarias de alta calidad para los análisis posteriores. Aquí, se proporcionan dos protocolos optimizados para aislar las células inmunitarias del cerebro y la médula ósea del cráneo. Las ventajas de ambos protocolos se reflejan en su simplicidad, rapidez y eficacia para producir una gran cantidad de células inmunitarias viables. Estas células pueden ser adecuadas para una serie de aplicaciones posteriores, como la clasificación de células, la citometría de flujo y el análisis transcriptómico. Para demostrar la eficacia de los protocolos, se realizaron experimentos de inmunofenotipado en cerebros de accidente cerebrovascular y médula ósea de cráneo normal mediante análisis de citometría de flujo, y los resultados se alinearon con los hallazgos de los estudios publicados.
El cerebro, el eje central del sistema nervioso, está protegido por el cráneo. Debajo del cráneo hay tres capas de tejido conectivo conocido como meninges: la duramadre, la aracnoides y la piamadre. El líquido cefalorraquídeo (LCR) circula en el espacio subaracnoideo entre la aracnoidea y la piamadre, amortiguando el cerebro y también eliminando los desechos a través del sistema glinfático 1,2. En conjunto, esta arquitectura única proporciona un entorno seguro y de apoyo que mantiene la estabilidad del cerebro y lo protege de posibles lesiones.
Durante mucho tiempo se ha considerado....
El protocolo fue aprobado por el Comité de Cuidado y Uso de Animales del Instituto Duke (IACUC). En el presente estudio se utilizaron ratones machos C57Bl/6 (3-4 meses de edad; 22-28 g). Los detalles de los reactivos y el equipo utilizado se enumeran en la Tabla de Materiales.
1. Suspensión unicelular del cerebro de ratón
NOTA: La Figura 1 ilustra la descripción general del protocolo de aislamiento de células cerebrales.
Para preparar células inmunitarias a partir del tejido cerebral del ratón, el protocolo generalmente produce células con alta viabilidad (84,1% ± 2,3% [media ± DE]). Aproximadamente el 70%-80% de estas células son CD45 positivas. En el cerebro normal del ratón, casi todas las células CD45+ son microglía (CD45LowCD11b+), como se esperaba. Este protocolo se ha utilizado en el laboratorio para diversas aplicaciones, incluido el análisis de citometría de flujo, la clasificación de.......
Aquí, se presentan dos protocolos simples pero efectivos para aislar las células inmunitarias del cerebro y la médula ósea del cráneo. Estos protocolos pueden producir de forma fiable una gran cantidad de células inmunitarias viables que pueden ser adecuadas para diversas aplicaciones posteriores, en particular para la citometría de flujo.
Para estudiar la neuroinflamación en diversos trastornos cerebrales, se han establecido muchos protocolos para la preparación de células inmunitar.......
Ninguno.
Agradecemos a Kathy Gage por su excelente contribución editorial. Las figuras de ilustración fueron creadas con BioRender.com. Este estudio contó con el apoyo financiero del Departamento de Anestesiología (Centro Médico de la Universidad de Duke) y subvenciones de los NIH NS099590, HL157354 y NS127163.
....Name | Company | Catalog Number | Comments |
0.5 mL microcentrifuge tubes | VWR | 76332-066 | |
1.5 mL microcentrifuge tubes | VWR | 76332-068 | |
15 mL conical tubes | Thermo Fisher Scientific | 339651 | |
18 G x 1 in BD PrecisionGlide Needle | BD Biosciences | 305195 | |
1x HBSS | Gibco | 14175-095 | |
50 mL conical tubes | Thermo Fisher Scientific | 339653 | |
96-well V-bottom microplate | SARSTEDT | 82.1583 | |
AURORA flow cytometer | Cytek bioscience | ||
BSA | Fisher | BP9706-100 | |
CD11b-AF594 | BioLegend | 101254 | 1:500 dilution |
CD19-BV785 | BioLegend | 115543 | 1:500 dilution |
CD19-FITC | BioLegend | 115506 | 1:500 dilution |
CD3-APC | BioLegend | 100312 | 1:500 dilution |
CD3-PE | BioLegend | 100206 | 1:500 dilution |
CD45-Alex 700 | BioLegend | 103128 | 1:500 dilution |
CD45-BV421 | Biolegend | 103133 | 1:500 dilution |
Cell Strainer 70 um | Avantor | 732-2758 | |
Dressing Forceps | V. Mueller | NL1410 | |
EDTA | Invitrogen | 15575-038 | |
Fc Block | Biolegend | 101320 | 1:100 dilution |
Forceps | Roboz | RS-5047 | |
LIVE/DEAD Fixable Blue Dead Cell Stain Kit | Thermo Fisher Scientific | N7167 | 1:500 dilution |
Ly6G-BV421 | BioLegend | 127628 | 1:500 dilution |
Ly6G-PerCp-cy5.5 | BioLegend | 127615 | 1:500 dilution |
NK1.1-APC-cy7 | BioLegend | 108723 | 1:500 dilution |
Percoll (density gradient medium) | Cytiva | 17089101 | |
Phosphate buffer saline (10x) | Gibco | 70011-044 | |
RBC Lysis Buffer (10x) | BioLegend | 420302 | |
Scissors | SKLAR | 64-1250 | |
WHEATON Dounce Tissue, 15 mL Size | DWK Life Sciences | 357544 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoExplorar más artículos
This article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados