Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats Représentatifs
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Nous présentons ici un protocole pour visualiser le transport des monocarboxylates, du glucose et de l’ATP dans les cellules gliales et les neurones à l’aide de capteurs basés sur le transfert d’énergie par résonance de Förster génétiquement codés dans une préparation cérébrale ex-vivo de larves de drosophile .

Résumé

Les besoins énergétiques élevés du cerveau dus à l’activité électrique sont l’une de leurs caractéristiques les plus distinctives. Ces besoins sont satisfaits par la production d’ATP à partir du glucose et de ses métabolites, tels que les monocarboxylates lactate et pyruvate. On ne sait toujours pas comment ce processus est réglementé ni qui en sont les principaux acteurs, en particulier chez la drosophile.

En utilisant des capteurs basés sur le transfert d’énergie par résonance de Förster génétiquement codés, nous présentons une méthode simple pour mesurer le transport des monocarboxylates et du glucose dans les cellules gliales et les neurones dans une préparation ex-vivo du cerveau larvaire de la drosophile . Le protocole décrit comment disséquer et coller un cerveau larvaire exprimant l’un des capteurs à une lamelle en verre.

Nous présentons les résultats d’une expérience complète dans laquelle le transport du lactate a été mesuré dans le cerveau des larves en neutralisant des transporteurs de monocarboxylate précédemment identifiés dans les cellules gliales. De plus, nous démontrons comment augmenter rapidement l’activité neuronale et suivre les changements de métabolites dans le cerveau actif. La méthode décrite, qui fournit toutes les informations nécessaires, peut être utilisée pour analyser d’autres tissus vivants de la drosophile .

Introduction

Le cerveau a des besoins énergétiques élevés en raison du coût élevé de la restauration des gradients ioniques dans les neurones causés par la génération et la transmission du signal électrique neuronal, ainsi que par la transmission synaptique 1,2. On a longtemps pensé que cette forte demande énergétique était satisfaite par l’oxydation continue du glucose pour produire de l’ATP3. Des transporteurs spécifiques à la barrière hémato-encéphalique transfèrent le glucose dans le sang vers le cerveau. Des niveaux glycémiques constants garantissent que le cerveau reçoit un apport constant de ....

Protocole

1. Entretien de la souche de mouche et synchronisation larvaire

  1. Pour réaliser ces expériences, utilisez des cultures de mouches élevées à 25 °C sur des aliments standard pour drosophiles composés de 10 % de levure, 8 % de glucose, 5 % de farine de blé, 1,1 % de gélose, 0,6 % d’acide propionique et 1,5 % de méthylparabène.
  2. Pour suivre ce protocole, utilisez les lignes suivantes : w1118 (fond de contrôle expérimental), OK6-GAL4 (pilote pour les motoneurones), repo-GAL4 (pilote pour toutes les cellules gliales), CG-GAL4 (pilote pour les corps adipeux), UAS-Pyronic (capteur de pyruvate), UAS-FLII12

Résultats Représentatifs

Jusqu’à 1 h, cette procédure permet de mesurer facilement les changements intracellulaires dans la fluorescence des capteurs de monocarboxylate et de glucose. Comme le montre la figure 4, les capteurs laconiques dans les cellules gliales et les motoneurones répondent à 1 mM de lactate à un rythme similaire au début de l’impulsion, mais les motoneurones atteignent une augmentation plus élevée par rapport à la ligne de base pendant l’impulsion de 5 minutes, comme démontré pré.......

Discussion

L’utilisation du modèle de la drosophile pour l’étude du métabolisme cérébral est relativement nouvelle26, et il a été démontré qu’il partage plus de caractéristiques que prévu avec le métabolisme des mammifères, qui a été principalement étudié in vitro dans des cultures de neurones primaires ou des tranches de cerveau. La drosophile excelle dans les expériences in vivo grâce à la batterie d’outils génétiques et de capteurs généti.......

Déclarations de divulgation

Les auteurs ne déclarent aucun intérêt concurrent ou financier.

Remerciements

Nous remercions tous les membres du Sierralta Lab. Ce travail a été soutenu par FONDECYT-Iniciación 11200477 (à AGG) et FONDECYT Regular 1210586 (à JS). UAS-FLII12Pglu700μδ6 (capteur de glucose) a été gracieusement offert par Pierre-Yves Plaçais et Thomas Préat, CNRS-Paris.

....

matériels

NameCompanyCatalog NumberComments
AgaroseSigmaA9539
CaCl2SigmaC3881
CCD Camera ORCA-R2Hamamatsu-
Cell-R SoftwareOlympus-
CG-GAL4Bloomington Drosophila Stock Center7011Fat body driver
Dumont # 5 ForcepsFine Science Tools11252-30
DV2-emission splitting systemPhotometrics-
Glass coverslips (25 mm diameter)Marienfeld111650Germany
GlucoseSigmaG8270
GraphPad PrismGraphPad SoftwareVersion 8,0,2
HEPESSigmaH3375
ImageJ softwareNational Institues of HealthVersion 1,53t
KClSigmaP9541
LUMPlanFl 40x/0.8 water immersion objectiveOlympus-
MethylparabenSigmaH5501
MgCl2SigmaM1028
NaClSigmaS7653
OK6-GAL4Bloomington Drosophila Stock CenterMotor neuron driver
PicrotoxinSigmaP1675SCAUTION-Fatal if swallowed
Poly-L-lysineSigmaP4707
Propionic AcidSigmaP1386
Repo-GAL4Bloomington Drosophila Stock Center7415Glial cell driver (all)
Sodium LactateSigma71718
Sodium pyruvateSigmaP2256
Spinning Disk fluorescence Microscope BX61WIOlympus-
SucroseSigmaS0389
TrehaloseUS BiologicalT8270
UAS-AT1.03NL Kyoto Drosophila Stock Center117012ATP sensor
UAS-Chk RNAi GD1829Vienna Drosophila Resource Centerv37139Chk RNAi line
UAS-FLII12Pglu700md6 Bloomington Drosophila Stock Center93452Glucose sensor
UAS-GCaMP6f Bloomington Drosophila Stock Center42747Calcium sensor
UAS-LaconicSierralta Lab-Lactate sensor
UAS-PyronicPierre Yves Placais/Thomas Preat-CNRS-Paris
UMPlanFl 20x/0.5 water immersion objectiveOlympus-

Références

  1. Vergara, R. C., et al. The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior. Frontiers in Computational Neuroscience. 13 (49), 1-18 (2019).
  2. Pulido, C., Ryan, T. A.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Ce mois ci dans JoVENum ro 200M tabolitesEx vivoCerveau larvaire de la drosophileCapteurs g n tiquement cod sProduction d ATPM tabolisme du glucoseLactatePyruvateR gulationActeurs cl sCapteurs bas s sur le transfert d nergie par r sonance F RSTERMesure du transportCellules glialesNeuronesPr paration du cerveau larvaireTransport du lactateTransporteurs de monocarboxylatesActivit neuronaleChangements de m tabolitesTissus vivants

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.