JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

微生物は、真核細胞への曝露後に存続した場合、どのように細菌の病原性の分野の中心となるのは、定義する機能です。この記事では、内部および宿主細胞に関連する個々の細菌の生存を明らかに蛍光色素を使用するためのプロトコルの概要を説明します。

要約

微生物は、真核細胞への曝露後に存続した場合、どのように細菌の病原性の分野の中心となるのは、定義する機能です。これらの疑問を解決するために、現在のプロトコルは、コロニー数アッセイ、ゲンタマイシン保護アッセイ、および電子顕微鏡が含まれています。コロニー数およびゲンタマイシン保護アッセイは、全体細菌集団の生存能力を評価し、個々の細菌生存率を測定することができない。電子顕微鏡法は、個々の細菌の生存度を決定し、宿主細胞におけるそれらの局在化に関する情報を提供するために使用することができる。しかし、細菌はしばしば生存率の評価を困難に、電子密度の範囲を示す。この記事では、内部および宿主細胞に関連する個々の細菌の生存を明らかに蛍光色素を使用するためのプロトコルの概要を説明します。これらのアッセイは、初代ヒト好中球淋菌の生存を評価するために独自に開発されましたが、あるべき任意の細菌宿主細胞の相互作用にpplicable。これらのプロトコルは、アクセス可能であり、膜不透過性蛍光色素(ヨウ化プロピジウムおよびSYTOXグリーン)のすべての細菌を、染色膜透過性蛍光色素(SYTO9及び4 '、6 - ジアミジノ-2 - フェニル[DAPI])を、コンバイン生育不能細菌。真核細胞の透過処理の前に、抗体または蛍光試薬は、細胞外細菌を同定するために添加される。したがって、これらのアッセイは、真核細胞への内部付着細菌の生存を判別する。プロトコルは、個々の細菌の細胞内局在を決定するために、真核細胞マーカーに対する蛍光抗体と組み合わせて生存色素を使用するために設けられている。この資料に記載された細菌の生存率染料は、個々の細菌の生存率を評価し、細菌が宿主細胞内で生存する場所に関する情報を提供するために、伝統的な微生物学技術に対して敏感で補体および/または代替物であるS。

概要

細菌やそれらが存在するホスト間の動的相互作用と共進化があります。細菌が付着小器官、分泌系、および/または宿主食細胞および非貪食細胞のそれらの生産的な感染を可能にする毒素を産生する能力を進化させてきた。細菌は、宿主免疫系の認識と抗菌活性と競合しなければならない。宿主の免疫系は、物理的および化学的障壁、免疫細胞、補体系、及び体液性免疫の他の成分を含む、先天性および適応性の成分から構成されている。多くの細菌は、多層宿主免疫応答による殺傷およびクリアランスを受けやすいが、いくつかの病原性および日和見細菌は、種々の宿主細胞に感染し、宿主免疫応答1によるクリアランスを破壊するメカニズムを進化させてきた。 淋菌は、細菌病原体の一例であるそれは非常に、そのヒト宿主に固執するようになっている。N。淋菌は、容易に尿生殖路、咽頭、結膜、および直腸の粘膜上皮細胞の管の表面にコロニーを形成。植民地化は、粘膜部位に好中球の豊富な採用をトリガします。好中球は、微生物を殺す抗菌様々なプロセスを持っている専門的な食細胞であるが、N。淋菌は、好中球2-5の存在下で生存することが可能である。このようなNとしてどのように細菌性病原体の理解淋菌覆す、抑制し、最終的には、通常敵対ホスト環境で生き残るために免疫応答をハイジャックは、感染症と闘うための新たな治療法の開発に不可欠である。

多くの場合、宿主細胞内での細菌の生存を調査するために使用される実験プロトコルは、コロニーカウントアッセイ、ゲンタマイシン保護アッセイ、電子顕微鏡法が挙げられる。コロニー数のアッセイでは、感染した細胞の集団は、WHの洗剤で、例えば(溶解されているICH細菌は細菌を遊離させるために)抵抗性である。溶解物を希釈し、寒天ベースの培地上にプレートし、溶解物中のコロニー形成単位を、各時点および/または実験条件について列挙されている。このアプローチは、全体の細菌集団の生存を報告したが、細胞内と細胞外の生存を区別することはできない。コロニーカウントアッセイの変形、ゲンタマイシン保護アッセイは、具体的には真核生物の原形質膜6を通過する抗生物質ゲンタマイシンできないことに基づいて、細胞内の細菌の生存率を測定する。しかし、このアッセイは、ゲンタマイシン(または同様に、真核生物膜非透過性である別の抗生物質)と内部の細菌へのアクセス権を持っている抗生物質のことができないことによって殺傷に対して感受性である細菌に依存している。したがって、ゲンタマイシン保護アッセイは、すべての細菌種の検査のために有効であるか否よい高度における細菌の生存率を調べると好中球などのピノサイトーシス細胞。 (細菌が凝集体又は異なって、個々の細菌細胞から振る舞う微小コロニーを形成している場合など )これらのアプローチのいずれも、細胞内局在や個々の細菌の他の動作を明らかにする。個々の外部および内部の細菌の生存率を調べるための別のアプローチは、頻繁に使用される薄切片を透過型電子顕微鏡(TEM)である。それはさらに、亜細胞マーカーに対する金結合抗体を用いて免疫電子顕微鏡によって調査することができる宿主細胞( 例えばファゴソーム、細胞質、オートファゴソーム)、細菌の位置に関する情報を提供することができるという点で、このアプローチは有利で ​​ある。しかし、電子顕微鏡では、細菌の生存能力を評価することを特に区別されません。埋め込まれた切片は、酢酸ウラニル、クエン酸鉛、または他の電子密度試薬で染色し、電子顕微鏡によって画像化されると、電子密度の高い細菌が生存可能であり、電気考えられているTRONルーセント生育不能7,8。しかし、この仮定はひどく混乱膜や細胞質を欠いたとだけ死菌ので、電子·ルーセントが表示され、細菌の生存能力を過大評価。さらに、いくつかの細菌種は、それが困難な生存率を決定すること、それらの成長段階に応じて、電子密度の範囲を表示することができる。

代替として、またはこれらの広く使用されている方法に加えて、ここでは、宿主細胞によって内在化に取り付けられた細菌の生存を評価するための細菌の生存率を示す蛍光染料の使用のためのプロトコルおよび理論的根拠を提供する。細胞外の細菌を同定するために、感染細胞を、最初のそのようなレクチンまたは細菌特異的抗体などの蛍光試薬にさらされる。感染した細胞は、その後、透過処理し、細菌の生存のための代理として、劣化した膜対そのままで細菌に差動的にアクセス可能なDNA特異的染料にさらされている。最初のP INヨウ化プロピジウムは、膜を侵害しているため、生育不能と考えられているものの細菌のみがアクセスされている間rotocol、膜透過性色素SYTO9は、全細菌集団を同定する。ヨウ化とSYTO9は、バイオフィルム中の細菌の生存能力を評価する非病原性細菌から病原性差別、そして実行可能な水性菌9月12日を列挙するために使用されている。 SYTOXグリーン生育不能人口のみがアクセスされているときに2番目のプロトコルでは、4 '、6'-ジアミジノ-2 - フェニルインドール(DAPI)は、総菌数を識別します。これらの生存度色素対は、細菌の細胞内局在を定義する、例えば、目的のタンパク質に関連して各細菌の位置を決定するために、免疫蛍光法と組み合わせることができる。これらのアッセイの使用は、宿主細胞の感染時に細菌殺傷または生存につながる相互作用に重要な洞察を提供します。この資料に記載されているプロトコルは、生存率を評価した好中球ファゴソーム5,13,14の異なる集団に含めた初代ヒト好中球、および内部で接続されている淋菌 。しかしながら、これらのプロトコルは、プロ食細胞、非専門食細胞、および原生動物で15-24グラム陽性およびグラム陰性細菌の生存率を評価するために適用することができる。

プロトコル

1。ヨウ化プロピジウムとSYTO9と細菌の生存率を評価する

  1. 目的の細菌で24ウェルプレートに直径12mmの円形のカバーガラスに付着している細胞に感染する。アルデヒドまたは有機溶媒を用いて細胞を固定しないでください。
  2. 一旦穏やかで細胞をすすぎ、0.1M 3 - (N-モルホリノ)、1mMのMgCl 2(MOPS /のMgCl 2)を含有するプロパンスルホン酸(MOPS)、pH7.2で、。
  3. 外部の細菌を検出するために、MOPS /のMgCl 2に、関心対象の細菌種に特異的に結合するアレクサフルーア647結合抗体またはレクチンを用いて室温で暗所で10分間、細胞をインキュベートする。

NOTE:行動、関心のあるレクチンまたは抗体に関係なく生存率( 図1)の全ての細菌に特異的に結合することを示すために、宿主細胞の非存在下で、生および死細菌を制御する。

  1. MOPS / MgCl 2を用いて細胞を2回すすいでください。
  2. 吸引物M細胞からEDIAと0.5ミリリットル生/死染色溶液を加える。生/死染色溶液は、MOPS / 塩化マグネシウムが5μmのSYTO9、30μMのヨウ化プロピジウム、0.1%サポニン(最終濃度)である
  3. 暗所で室温で15分間、細胞をインキュベートする。
  4. MOPS / 塩化マグネシウム中で細胞を2回すすいでください
  5. 反転したカバーは、スライドガラス上に裏向きと明確なマニキュアで密封する。封入剤は使用しないでください。
  6. 緑、赤、遠赤の画像取得と互換性のフィルターセットで蛍光顕微鏡を用いて、30分以内に画像を取得する。

注:従来の蛍光顕微鏡法および共焦点レーザー走査顕微鏡法の両方を使用することができる。 30分後、蛍光色素は、細菌から漏れ始めておらず、取得したデータはもはや正確である。この記事に示されている画像は、のOpenLABソフトウェアを使用して、浜松オルカ-ERデジタルカメラニコンエクリプスE800直立蛍光顕微鏡で得た。 650 nmおよび663の発光フィルター - - アレクサフルーア647の蛍光は、590の励起波長を有するフィルターを用いて検出した735 nmであり、偽色の青である。 580と600nmの発光フィルター - - 660 nmのヨウ化プロピジウムの蛍光を、540の励起波長を有するフィルターを用いて検出した。 495 nmおよび515の発光フィルター - - 555 nmのSYTO9からの蛍光は、465の励起波長を有するフィルターを用いて検出した。

  1. このプロトコルは、外部生育不能細菌が赤+青表示され、内部の生育不能細菌は、外部生菌が緑+青表示され、内部の生菌のみを緑色にのみ赤く表示された画像になります。目で、外部の生育不能生育不能内部、実行可能な外部、および内部生存している細菌の数を数える。
  2. 外部の細菌の総数(外部によって生菌数で割ることによって、外部生菌の割合を計算する実行可能なプラスnonviでき)。内部の細菌の総数(実行可能なプラス生育不能)( 図4)により、内部生菌数を割ることによって、内部生菌の割合を計算します。
  3. このプロトコルで実行するには、2つの本質的なコントロールがあります。まず、すべての生育不能細菌はヨウ化陽性であり、すべての生菌がSYTO9陽性であることを検証します。 (任意の宿主細胞の非存在下)の細菌の中間対数文化が> 95%のSYTO9陽性である必要があります。 N.の中間対数培養物は、 図2にも示されている淋菌 (ミリリットル当たりの単位を形成する10 8コロニーでの)生/死染色溶液と共にインキュベートした。第二に、ヨウ化プロピジウムとSYTO9両方が透過処理、感染した宿主細胞に入ることができることを検証します。
    1. 死んだ細菌の集団を生成するために、1.5mlマイクロ遠心チューブ内のユニットを形成し、2×10 8個の細菌コロニーを採取し、70%のイソプロパノールを添加し、10分間放置。マイクロフュージA中の細菌をペレットND残留イソプロパノールを除去するためにPBSで2回細菌を洗い流す。 1.7 - その後、プロトコルは1.5ステップに従ってください。ガラススライドに細菌懸濁液の5μLを加え、カバーガラスでオーバーレイ。プロトコルステップ1.9のように、画像サンプル。これらの条件下では、人口の100%がヨウ化陽性( 図2)である必要があります。いくつかの細菌種では、ヨウ化プロピジウムは完全SYTO9染色を圧倒できず、生育不能細菌は黄色やオレンジ色表示されることがあります。
    2. 好中球のような食細胞の場合は、イソプロパノール-死菌に細胞を公開し、細胞内細菌の100%がヨウ化陽性( 図3)であることを確認してください。死菌を内在化しないことができる非食細胞のためには、アジ化ナトリウム又は生/死染色溶液を添加する前に、他の細胞浸透性抗菌剤を用いて感染細胞を治療するのに十分であり得る。

2。 SYTOXグリーと評価する細菌生存率NおよびDAPI

  1. ラベル暗所で室温で20分間、モースの限定培地25中10μg/ mlのDAPIで目的の細菌。
  2. DAPIで標識した細菌と24ウェルプレートに直径12mmの円形のカバーガラスに付着している細胞に感染する。アルデヒドまたは有機溶媒を用いて細胞を固定しないでください。
  3. MOPS / MgCl 2をで細胞を1回すすいでください
  4. 外部の細菌を検出するために、MOPS /のMgCl 2に、関心対象の細菌種に特異的に結合するアレクサフルーア647結合抗体またはレクチンで暗所で室温で10分間、細胞をインキュベートする。提案しコントロールするためのプロトコルのステップ1.3の注を参照してください。
  5. 細胞から培地を吸引し、MOPS / 塩化マグネシウムで0.5ミリリットル0.4μMSYTOXグリーンを追加します。
  6. 暗所で室温で5分間、細胞をインキュベートする。
  7. MOPS / 塩化マグネシウム中で細胞を2回すすいでください。
  8. 5分間のMOPS / 塩化マグネシウム中で細胞を1回洗浄します。
  9. 蛍光顕微鏡で30分以内に画像を取得します。顕微鏡、デジタルカメラ、および取得ソフトウェアの説明については、プロトコルのステップ1.9を参照してください。

注:アレクサフルーア647からの蛍光は590の励起波長のフィルターを用いて検出した - 650 nmおよび663の発光フィルター - 735 nmであり、偽色の赤です。 495 nmおよび515の発光フィルター - - 555nmのSYTOXグリーンからの蛍光は、465の励起波長を有するフィルターを用いて検出した。 375と400nmのバリアフィルター - DAPIからの蛍光は、355の励起波長を有するフィルターを用いて検出した。

  1. このプロトコルは、外部生育不能細菌が緑+赤表示され、内部の生育不能細菌は青+緑に表示され、外部の生菌は青+赤で表示され、内部の生菌のみ( 図4)青く見える画像になります。プロトコルセントで説明したように外部と内部の細菌の割合を定量化P 1.11。
  2. プロトコールステップ1.12に記載されたコントロールは、DAPI / SYTOX Green色素の組み合わせ( 図2および図3)を用いて実施されるべきである。

3。細胞内局在と並んで細菌の生存率を評価する

  1. ラベル暗所で室温で20分間、モースの定義された培地中で10μg/ mlのDAPIで目的の細菌。
  2. DAPIで標識した細菌と24ウェルプレートに直径12mmの円形のカバーガラスに付着している細胞に感染する。アルデヒドまたは有機溶媒を用いて細胞を固定しないでください。
  3. MOPS / MgCl 2をで細胞を1回すすいでください
  4. 外部の細菌を検出するために、MOPS /のMgCl 2に、関心対象の細菌種に特異的に結合するアレクサフルーア647結合抗体またはレクチンで暗所で室温で10分間インキュベートする。提案しコントロールするためのプロトコルのステップ1.3の注を参照してください。
  5. 細胞から培地を吸引し、細胞を2 TIをすすぐMOPS / 塩化マグネシウム中でMES。
  6. MOPS / MgCl 2を0.2%サポニンを含有する、20分間の関心の細胞内マーカーに対するアレクサフルーア555結合抗体で細胞を培養する。
  7. MOPS / 塩化マグネシウム中で細胞を2回すすいでください。
  8. 5分間のMOPS / 塩化マグネシウム中で細胞を1回洗浄します。
  9. 細胞から培地を吸引し、MOPS / 塩化マグネシウムで0.4μMSYTOXグリーンを追加します。
  10. 暗所で室温で細胞を5分間インキュベート。
  11. MOPS / 塩化マグネシウム中で細胞を2回すすいでください。
  12. 5分間のMOPS / 塩化マグネシウム中で細胞を1回洗浄します。
  13. 蛍光顕微鏡での30分以内に、スライドの画像を取得する。顕微鏡、デジタルカメラ、および取得ソフトウェアの説明については、プロトコルのステップ1.9を参照してください。

注:アレクサフルーア647からの蛍光は590の励起波長のフィルターを用いて検出した - 650 nmおよび663の発光フィルター - 735 nmであり、偽色の紫色である。蛍光fは580と600nmの発光フィルター - - 660 nmのロムアレクサフルーア555が540の励起波長を有するフィルターを用いて検出した。 495 nmおよび515の発光フィルター - - 555nmのSYTOXグリーンからの蛍光は、465の励起波長を有するフィルターを用いて検出した。 375と400nmのバリアフィルター - DAPIからの蛍光は、355の励起波長を有するフィルターを用いて検出した。

  1. このプロトコルは、外部生育不能細菌が緑+紫に見える画像になり、内部の生育不能細菌は青+緑に表示され、外部の生菌は青+紫に見える、内部生菌は青表示され、細胞内のタンパク質( 図4)、赤が表示されます。プロトコールに記載されているように外部と内部の生菌perecentを定量化することは1.11を繰り返します。
  2. プロトコールステップ1.12に記載されたコントロールは、DAPI / SYTOX Green色素の組み合わせ( 図2および図3)を用いて実施されるべきである。
  3. で生存可能で、生育不能細菌をカウントすることに加え、目的の細胞内マーカーと共局在するため、正または負のいずれかとし、各細菌を分類する。
  4. 生菌数の合計で共局在生菌数で割ることによって細胞内のマーカーと共局在生菌の割合を計算する。生育不能細菌の総数で生育不能共局在した細菌の数を割ることによって細胞内のマーカーと共局在生育不能細菌の割合を計算します。

結果

概説したプロトコルは、N.の生存を調べた初代ヒト好中球5,26にさらされた後淋菌 。好中球は、感染させたN.淋菌および緑色蛍光生存色素SYTO9及び赤色蛍光ヨウ化プロピジウム( 図4A)を使用して、プロトコル1で処理した。染料は、優先的に、宿主細胞原形質膜を透過性にするために、コレステロールを隔離サポニンの存在下ではなく、N.添加し?...

ディスカッション

DNAがヒト細胞にし、内部に取り付け生死菌を特定するための蛍光レクチンと一緒に結合し、実行可能性染料使用する2つのプロトコルがここに提示した。両方のプロトコルが有効に死菌からライブを区別するので、使用するプロトコルの選択は、実験の目的に依存します。第一のプロトコルはそのまま細菌を検出するために、生育不能細菌やSYTO9を検出するために、ヨウ化プロピジウムを使用...

開示事項

著者は、彼らが競合する経済的利益を持っていないことを宣言します。

謝辞

私たちは、原稿の重要な読書のためにアシャスミルノフとローラGonyarに感謝します。この作品は、NIH T32 AI007046によって部分的にサポートされていましたAKCMBJへの助成金NIHのR00 TW008042とR01 AI097312によってサポートされていました。

資料

NameCompanyCatalog NumberComments
21 G 3/4 butterfly needles for blood collectionBecton Dickinson367251 
Blood collection tubes with Sodium Heparin 10 mlBecton Dickinson366480 
Sterile water for irrigationBaxter07-09-64-070 
Dextran 500Sigma31392 
Sodium ChlorideFisher ScientificS641 
DextroseRicca Chemical CompanyRDCD0200 
Dulbecco's PBS no Ca2+ or Mg2+Thermo ScientificSH3002802 
Ficoll solutionGE Healthcare17-1440-03 
Acetic AcidFisher ScientificBP2401 
12 mm circular glass coverslipsFisher Scientific12-545-80 12CIR-1 
24-well platesCorning Incorporated3524 
Pooled Human SerumSigmaS7023 
RPMIMediatech15-040-CV 
Fetal Bovine SerumThermo ScientificSH3007103 
Human interleukin-8R&D Systems208-IL/CF 
MOPSSigmaM3183 
MgCl2Fisher ScientificBP214 
Propidium IodideLife TechnologiesL7007 or L7012 
SYTO9Life TechnologiesL7007 or L7012 
SaponinFluka Analytical47036 
Alexa Fluor 647-coupled soybean lectinLife TechnologiesL-32463 
DAPISigmaD8417 
SYTOX GreenLife TechnologiesS7020 
Mouse anti-CD63Developmental Studies Hybridoma BankH5C6 
Alexa Fluor 555 Antibody Labeling KitLife TechnologiesA20187 
Hemacytometer Bright LineHausser Scientific1492 
ForcepsEMS78320 
Sorvall Legend RT + CentrifugeThermo Scientific75004377 

参考文献

  1. Woolard, M. D., Frelinger, J. A. Outsmarting the host: bacteria modulating the immune response. Immunol. Res. 41, 188-202 (2008).
  2. Johnson, M. B., Criss, A. K. Resistance of Neisseria gonorrhoeae to neutrophils. Front Microbiol. 2, 77 (2011).
  3. Simons, M. P., Nauseef, W. M., Apicella, M. A. Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect. Immun. 73, 1971-1977 (2005).
  4. Seib, K. L., et al. Investigation of oxidative stress defenses of Neisseria gonorrhoeae by using a human polymorphonuclear leukocyte survival assay. Infect. Immun. 73, 5269-5272 (2005).
  5. Criss, A. K., Katz, B. Z., Seifert, H. S. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell Microbiol. 11, 1074-1087 (2009).
  6. Edwards, A. M., Massey, R. C. Invasion of human cells by a bacterial pathogen. J. Vis. Exp. (49), e2693 (2011).
  7. Bozzola, J. J. Conventional specimen preparation techniques for transmission electron microscopy of cultured cells. Methods Mol. Biol. 369, 1-18 (2007).
  8. Dorward, D. W. Ultrastructural analysis of bacteria-host cell interactions. Methods Mol. Biol. 431, 173-187 (2008).
  9. Yang, L., et al. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer. Anal. Chem. 82, 1109-1116 (2010).
  10. Mueller, R. S., et al. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J. Bacteriol. 189, 5348-5360 (2007).
  11. Shen, C., et al. Enhanced inactivation of Salmonella and Pseudomonas biofilms on stainless steel by use of T-128, a fresh-produce washing aid, in chlorinated wash solutions. Appl. Environ. Microbiol. 78, 6789-6798 (2012).
  12. Hoefel, D., Grooby, W. L., Monis, P. T., Andrews, S., Saint, C. P. Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. J Microbiol Methods. 55, 585-597 (2003).
  13. Oh, H., Siano, B., Diamond, S. Neutrophil isolation protocol. J. Vis. Exp.. (17), e745 (2008).
  14. Allen, L. A. Immunofluorescence and confocal microscopy of neutrophils. Methods Mol Biol. 412, 273-287 (2007).
  15. Kaplan, E. L., Chhatwal, G. S., Rohde, M. Reduced ability of penicillin to eradicate ingested group A streptococci from epithelial cells: clinical and pathogenetic implications. Clin. Infect. Dis. 43, 1398-1406 (2006).
  16. Chow, O. A., et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 8, 445-454 (2010).
  17. Thulin, P., et al. Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med. 3, e53 (2006).
  18. Kubica, M., et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One. 3, (2008).
  19. Swords, W. E., et al. Mycobacterium xenopi multiplies within human macrophages and enhances HIV replication in vitro. Microb. Pathog. 40, 41-47 (2006).
  20. Tamilselvam, B., Almeida, R. A., Dunlap, J. R., Oliver, S. P. Streptococcus uberis internalizes and persists in bovine mammary epithelial cells. Microb. Pathog. 40, 279-285 (2006).
  21. Martinez, A. N., et al. Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J. Clin. Microbiol. 47, 2124-2130 (2009).
  22. Botha, M., Botes, M., Loos, B., Smith, C., Dicks, L. M. Lactobacillus equigenerosi strain Le1 invades equine epithelial cells. Appl. Environ. Microbiol. 78, 4248-4255 (2012).
  23. Allen, L. A., Schlesinger, L. S., Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115-128 (2000).
  24. Smith, C. D., Berk, S. G., Brandl, M. T., Riley, L. W. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp. FEMS Microbiol. Ecol. 82, 574-583 (2012).
  25. Morse, S. A., Bartenstein, L. Purine metabolism in Neisseria gonorrhoeae: the requirement for hypoxanthine. Can. J. Microbiol. 26, 13-20 (1980).
  26. Johnson, M. B., Criss, A. K. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol. , (2013).
  27. Stocks, S. M. Mechanism and use of the commercially available viability stain. BacLight. Cytometry A. 61, 189-195 (2004).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

79

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved