JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

単一の腫瘍の抗原を目標とするキメラ抗原の受容器(CAR)を表現するJurkatのセルによって量的な腫瘍の細胞の殺害を評価するプロトコル。このプロトコルは末梢血得られたT細胞の確認の前にCARの蝶番の構造の急速な最適化のためのスクリーニングのプラットホームとして使用することができる。

要約

キメラ抗原受容体(CAR)T細胞は、腫瘍学の最前線にあります。CARは、ターゲティングドメイン(通常は一本鎖可変フラグメント、scFv)と、それに付随する鎖内リンカー、それに続くヒンジドメイン、膜貫通ドメイン、および共刺激ドメインで構成されています。鎖内リンカーおよびヒンジドメインの修飾は、CARを介した死滅に有意な影響を与える可能性があります。CARコンストラクトの各部分にはさまざまなオプションがあるため、多数の順列があります。CAR-T細胞の製造は時間と費用のかかるプロセスであり、多くのコンストラクトの作成とテストには多大な時間と材料の投資が必要です。このプロトコルは、Jurkatセル(CAR-J)のヒンジ最適化CARコンストラクトを迅速に評価するためのプラットフォームを記述しています。Jurkat細胞は、レンチウイルスの取り込み量が多い不死化T細胞株であり、効率的なCAR形質導入を可能にします。ここでは、蛍光イメージャーを用いてCAR-Jを迅速に評価し、PBMC由来T細胞の細胞溶解を確認するためのプラットフォームを紹介します。

概要

CAR-T細胞療法は、米国国立がん研究所が報告したように、2017年以降にFDAが承認した6つのCAR-T製品から明らかなように、血液悪性腫瘍において大きな有望性を示しています1。固形腫瘍を標的とする臨床試験には、多数のCAR-T細胞があります。新しいCAR標的を設計し、CARコンストラクトを最適化することは、CAR-T細胞の有効性に不可欠です。腫瘍関連抗原(TAA)を正確に標的とし、正常組織における低レベルのTAA発現を回避するには、各アプリケーションに最適なCARコンストラクトを選択することが不可欠です2

CARコンストラクトは、主に5つのコンパートメントで構成されています:(1)腫瘍抗原を標的とする細胞外一本鎖可変フラグメント(scFv)ドメイン;(2)ヒンジドメイン;(3)膜貫通ドメイン;(4)細胞内細胞質T細胞共刺激ドメイン;(5)シグナル伝達ドメイン。これらのドメインのそれぞれを修飾することは、その標的細胞3と係合するCAR-T細胞の精度に影響を及ぼす。したがって、これらのCARコンストラクトの細胞毒性と交差反応性をin vitroで評価することは、in vivo実験に向けて進むための適切なコンストラクトを選択するために重要です。T細胞による細胞溶解を評価する現在の方法には、51Cr放出アッセイ、乳酸デヒドロゲナーゼ放出アッセイ、生物発光イメージングアッセイ、リアルタイムインピーダンスベースの細胞解析、および細胞ベースのフローサイトメトリーアッセイ4,5が含まれる。ここで説明する蛍光イメージングベースのプラットフォームは、生細胞と死細胞の数を同定し、T細胞による細胞溶解を評価する間接的な方法とは対照的に、T細胞細胞溶解の直接的な定量化です。

これは、MDA-MB-231トリプルネガティブ乳がん(TNBC)細胞に対する上皮成長因子受容体(EGFR)CARを発現するJurkat細胞の細胞毒性を評価するための、最小限の介入で、簡単で費用対効果が高く、迅速でハイスループットな技術であり、EGFR CRISPRはMDA-MB-231細胞をノックアウトします。Jurkat細胞は、不死化ヒトTリンパ球細胞6であり、T細胞の活性化とシグナル伝達のメカニズムの研究に広く用いられている7。さらに、Jurkat細胞は、複数の研究でin vitroCAR試験に使用されています8,9,10,11Jurkat細胞はレンチウイルスによって容易に形質導入され、増殖が持続するため、このシステムはさまざまなEGFR CARコンストラクトのヒンジドメインを最適化するために活用されました。

このアッセイは、さまざまな腫瘍抗原を標的とする複数のCARコンストラクトのスクリーニングに使用でき、複数の接着腫瘍細胞株に対して、さまざまなエフェクターと腫瘍(E:T)の比率で使用できます。さらに、複数の時点を評価し、反復数を変更して、さまざまなCARコンストラクトの中から最適な殺傷を特定することができます。末梢血単核細胞(PBMC)由来のCD3 T細胞を用いて、最良のコンストラクトを確認する必要があります。この方法の開発の背後にある全体的な目標は、CARヒンジ形状をハイスループットで迅速に最適化し、形質導入効率の低さなどの障壁を克服し、PBMC由来のT細胞で確認することです。

プロトコル

注:すべての細胞培養作業は、白衣、手袋を着用し、標準的な無菌技術に従って、バイオセーフティキャビネットで行われます。

1. ジュルカト語を表現するCARの生成(CAR-J)

  1. Jurkat細胞を購入し、ATCCからE6-1のクローンを作る。T-75フラスコで1 x 106細胞を解凍し、T-75フラスコで培養します。10% FBSを添加したRoswell Park Memorial Institute(RPMI)培地をインキュベーター、37°C、5% CO2のインキュベーターで使用し、0.6 x 106細胞/mLの懸濁液に維持します。
  2. プレート:1 x 105 Jurkat 細胞/ウェル、組織培養処理、24ウェルプレート、レンチウイルス効率を高める4 μg/mLのポリブレンを含む500 μLのRPMI増殖培地にプレート。レーザーベースの蛍光検出ベンチトップセルアナライザーを使用して細胞をカウントします。ウェルの数は、評価するコンストラクトの数によって異なります。この例では、4 つのコンストラクトと形質変換されていないコントロールを使用します。CAR構成の設計を 表1に示します。
  3. 各CARコンストラクトのレンチウイルス/ウェルを10 μL添加します。CARコンストラクトの設計およびレンチウイルス産生は、前述のように行われた12
  4. 翌日、1 mLの増殖RPMI培地を各ウェルに加え、インキュベーターで37°C、5%CO2で培養を続けます。
  5. 2日後(Jurkat形質導入後合計72時間)に細胞を採取し、それらをカウントします。
  6. 1 x 104 セルを流動に使用して、Jurkat 細胞での CAR 発現を確認します。簡単に説明すると、細胞をFACS染色液(FSS)で2回洗浄してから、CAR-Jを標的とする抗体で標識し、CAR陽性を検出するために使用したCAR陽性を4°Cの暗所で30分間標識します。 FSSで再度2回洗浄し、前述のようにフローサイトメーターに細胞を通します12。メーカーが推奨する抗体濃度を使用してください。
  7. Jurkat細胞は形質導入が容易で、ほとんどの場合、>90%のCAR発現を示します。共培養細胞毒性アッセイのかなり前にCAR-Jを作製し、後で使用するために凍結します。

2. CFSE標識腫瘍細胞の播種

注:MDA-MB-231(ATCC由来、HTB-26)細胞は共同研究者からの贈り物であり、EGFR KO MDA-MB-231は前述のように作成されました12

  1. T-75フラスコで1 x 106 細胞を解凍し、T-75フラスコで培養します。MDA-MB-231腫瘍細胞およびCRISPR EGFR KO MDA-MB-231腫瘍細胞を、10%ウシ胎児血清(FBS)を添加した14 mLのダルベッコ改変イーグル培地(DMEM)で、5%CO2 を含む37°Cのインキュベーターで維持し、約70%コンフルエントになったら分割します。
  2. 通常の明視野顕微鏡で接着腫瘍細胞を観察し、約70%のコンフルエンスを確保します。
  3. 血清ピペットを使用してフラスコから増殖培地を取り除きます。3 mLのトリプシンをT75フラスコに加え、5%CO2 を含む37°Cのインキュベーターに3〜5分間入れて、フラスコから細胞を分離します。
  4. 等量(3 mL)の増殖培地を使用してトリプシンを中和します。細胞懸濁液を遠心チューブに集め、細胞を400 x g で4分間スピンダウンして細胞をペレットダウンします。
  5. ピペットを使用して上清を廃棄し、細胞を2 mLのリン酸緩衝生理食塩水(PBS)に再懸濁します。セルカウンターを使用して細胞濃度を決定します。
  6. 8 x 105 細胞を別の 15 mL チューブに移し、PBS を添加して容量を 1 mL にします。
  7. カルボキシフルオレセインスクシンイミジルエステル(CFSE;ストック濃度5 μM)2 μLを各チューブに加え、1 mLのピペットでよく混合します。
  8. 細胞をCFSEとともに、37°Cのインキュベーター内で5%CO2で20分間インキュベートします。20分後にインキュベーターからチューブを取り出し、チューブに5 mLの成長培地を加えます。
  9. チューブを400 x g で4分間遠心分離し、CFSE標識細胞をペレットダウンします。ピペットを使用して上清を廃棄し、1 mLの新鮮な培地を加えて細胞を再懸濁します。
  10. セルカウンターを使用して細胞濃度を再評価します。4 x 105 細胞を 25 mL の試薬リザーバーに移し、合計容量が 8 mL になるように培地を添加します。
    1. 100 μLの培地に5000個の腫瘍細胞/ウェルを播種するのに十分な容量を確保するには、マルチチャンネルピペットを使用してピペット操作できる容量が必要であり、ステップ1.7で数個の細胞の損失を補うために、10%〜20%の細胞と培地容量を余分に調製する必要があります。
  11. 5 mLの血清ピペットを使用して細胞懸濁液を完全に混合します。100μLのマルチチャンネルピペットを用いて、左半分の透明な平底黒色96ウェルプレートの各列に100μLの細胞懸濁液をピペットで移す。めっき戦略の例を 表2に示します。
  12. プレートの右半分に同様にEGFR KO細胞をピペットで固定します。プレート全体がプレートされたら、プレートを組織培養フードプラットフォーム上で前後左右にドラッグして、ウェル内の腫瘍細胞が均一に分布するようにします。
  13. 腫瘍細胞が付着するように、プレートを37°Cのインキュベーターで5%CO2 で4時間インキュベートします。

3. Jurkatsを発現するCARとCFSE標識腫瘍細胞の共培養

  1. 形質導入されていないJurkat細胞とCAR発現Jurkat細胞の数を用いて、各CAR-Jの4 x 105 細胞を25 mLのリザーバーに移します。DMEM増殖培地を添加し、総容量を2 mLにします。
  2. E:T が 4:1 の場合、2 x 104 CAR-J を 100 μL の培地に 1 ウェルあたり 2 x 10 4 CAR-J を、付着した腫瘍細胞を乱さないように、各ウェルの側面に沿って静かにマルチチャンネルピペットを使用して添加しました。
  3. マルチチャンネルピペットを使用して、腫瘍細胞およびJurkat細胞を含むウェルの側面にさらに100 μLの増殖培地を加えます。腫瘍グループのみに200μLの培地を投与し、すべてのウェルで合計300μLの培地を採取します。
  4. プレートをプラットフォームに沿って前後および左右にドラッグして、腫瘍細胞上のJurkat細胞が均一に分布するようにします。
  5. インキュベーターで37°C、5%CO2 で48時間共培養します。

4. イメージング用プレートの作製

  1. ヨウ化プロピジウム(PI)を低バックグラウンド蛍光培地に1 μg/mLで溶液を調製し、ウェルの数に基づいて、それぞれ100 μLの培地を得ます。
  2. 84ウェルの場合、PIを含む培地9 mLを調製します。ピペットを使用して培地を完全に混合します。
  3. Triton-Xを脱イオン水で希釈し、20%Triton-X溶液10 mLを作ります。共培養48時間後、プレートを1回反転させ、ペーパータオルを軽くたたいて、CAR-Jを含む上清を廃棄する。
  4. 次に、PIを含む上記で調製した培地100μL(ステップ4.2)を、接着した腫瘍細胞を乱さないように、マルチチャンネルピペットを使用して各ウェルに静かに添加します。
  5. 20 μL の 20% Triton-X 溶液を、全死対照として機能する各腫瘍タイプの最初のウェルに加えます。
  6. プレートをインキュベーターに20分間置きます。蛍光イメージングサイトメーターを使用してプレートをイメージングします。データはコンピュータに保存され、後で分析できます。

5. 蛍光画像の解析

  1. 細胞の腫瘍のみのウェルの1つを使用して、緑色蛍光チャネルを設定します。
  2. ウェルマスクを98%に減らして、ウェルのエッジの細胞を除去します。エッジのシグナルは完全ではありません。
  3. 緑色蛍光CFSEチャネル上のCFSE標識腫瘍細胞を同定します。蛍光強度の閾値を変更して、ウェル上のすべての細胞をピックアップします。
  4. 最小セル径を 25 μm に設定して、CFSE チャネルで検出された破片を除去します。これは、分析する細胞の種類によって異なります。
  5. Separate Touching Objectsを有効にして、個々のセルが互いに接触しているときに識別します。
  6. 画像ディスプレイで CFSE を選択し、グラフィックオーバーレイを見て、システムによって選択されているものを把握します。
  7. CFSE標識細胞が適切にピックアップされたら、生細胞集団と死細胞集団を定義するゲートを設定します。
  8. CFSEラベル付きセルを選択すると、Y軸のカウントとX軸の平均PI強度のヒストグラムが生成されます。
  9. Triton-Xを添加したウェル(ステップ4.5)に基づいて、スプリッターを引いて、低PI染色細胞と高PI染色細胞を区別します。このウェルには、ほとんどの細胞が高PI染色領域にあるはずです。
    注:PIは生細胞の基礎シグナルを示します。したがって、Triton-Xを添加すると、すべての細胞が死滅し、赤色蛍光チャネルで明るく染色されます。これにより、死細胞と生細胞を分離するためのゲートの描画が容易になります。
  10. セルを見やすくするために X 軸の値を調整します。次に、低PI染色細胞を生細胞として標識します。
  11. ライブセルを選択し、x軸に面積、y軸にカウントを持つ別のヒストグラムを設定します。
  12. 腫瘍のみを使用して別のスプリッターを描画し、細胞を捕捉し、破片を捕捉しません。Jurkatで処理された井戸は、CFSEで染色された破片を蓄積し始め、カウントから除去する必要があります。残りの非デブリは「ビッグセル」とラベル付けされています。
  13. プレート全体で分析を実行し、数値を含むスプレッドシートをエクスポートします。
  14. ビッグカウントをプロットして、CAR-Jへの曝露後にウェルに残っている生きたCFSE標識腫瘍細胞の数を特定します。一元配置分散分析を使用して統計量を決定します。

結果

CAR-J1 の E:T 比は 1:8 から 8:1 の範囲で 72 時間で評価され、TNBC MDA-MB-231 細胞の EGFR を標的としました。Jurkat細胞をポリブレンを含むCARレンチウイルスで形質導入し、ステップ2で説明したようにCAR-J細胞を作製しました。CAR-J1の細胞毒性は、E:T比が高いほど有意に増加し、1:8比で死滅に差はありませんでした(図1)。4:1 E:T で 72 時間にわたって 50% 以上の死滅が観察されまし?...

ディスカッション

本研究では、Jurkat細胞におけるCAR発現によって誘導される標的特異的な細胞溶解活性を効率的に評価するための迅速な方法を提案しました。すべてのCARコンストラクトは、同じscFvを持っていますが、ヒンジドメインと膜貫通ドメインが異なり、CAR-T細胞の効力に影響を与えることが示されています13。これらのCAR-Jによる非特異的死滅のさらなる評価は、抗原ノックアウト(KO...

開示事項

著者は何も開示していません。

謝辞

MDA-MB-231は、シェーン・ステックライン博士からの親切な贈り物でした。著者らは、この研究を実施するためにカンザス大学がんセンターから資金提供を受けていることを認めている。

資料

NameCompanyCatalog NumberComments
15 mL Conical Tube (Sterile)Midwest Scientific#C15BAny similar will work
50 mL Conical Tube (Sterile)Thermo Scientific339652Any similar will work
Black/Clear 96 well plateFalcon353219Celligo has a list of compatible plates
Celigo 4 Channel Imaging CytomenterNexcelcom Bioscience200-BFFL-5CAny similar will work
Celigo SoftwareNexcelcom BioscienceVersion 5.3.0.0Any similar will work
Cell Culture IncubatorThermo ScientificHeraCell 160iAny similar will work
Cell Culture Treated Flasks (T75, various sizes, Sterile)TPP90076Any similar will work
CFSETonbo13-0850-U500Any similar will work
Cytek Muse Cell AnalyzerCytek0500-3115Any similar will work
DMEMGibco11995-040Any similar will work
FBSGemini bio-products900-108Any similar will work
Flow CytometerCytek, BD, etcAurora, LSR II, etcAny similar will work
FlowJo SortwareBecton Dickinson & Company Version 10.7.1Any similar will work
Fluorobrite DMEMGibcoA18967-01Any similar will work
GraphPad SoftwareGraphPadVersion 9.3.1 (471)Any similar will work
Multichanel PipetteThermo ScientificFinnpipette F2Any similar will work
PBSGibco10010-031Any similar will work
PenStrepGibco15070-063Any similar will work
Pipette tips (Sterile, filtered, 1 mL, Various sizes)Pr1maPR-1250RK-FL, etcAny similar will work
Pipettors Thermo ScientificFinnpipette F2Any similar will work
Propidium IodideInvitrogenP1304MPAny similar will work
RPMICorning10-041-cvAny similar will work
Serological Pipette AidDrummond Scientific4-000-105Any similar will work
Serological Pipettes (Sterile, various sizes)Pr1maPR-SERO-25, etcAny similar will work
Sodium PyruvateCorning25-000-CIAny similar will work
Sterile ReservoirsMidwest ScientificRESE-2000Any similar will work
Table top centrifugeEppendorf5810RAny similar will work

参考文献

  1. Mitra, A. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol. 14, 1188049 (2023).
  2. Labanieh, L., Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature. 614, 635-648 (2023).
  3. Sterner, R. C., Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11 (4), 69 (2021).
  4. Lisby, A. N., Carlson, R. D., Baybutt, T. R., Weindorfer, M., Snook, A. E. . Methods in Cell Biology. 167, 81-98 (2022).
  5. Kiesgen, S., Messinger, J. C., Chintala, N. K., Tano, Z., Adusumilli, P. S. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc. 16 (3), 1331-1342 (2021).
  6. Schneider, U., Schwenk, H. U., Bornkamm, G. Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 19 (5), 621-626 (1977).
  7. Abraham, R. T., Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 4 (4), 301-308 (2004).
  8. Bloemberg, D., et al. A high-throughput method for characterizing novel chimeric antigen receptors in Jurkat cells. Mol Ther Methods Clin Dev. 16, 238-254 (2020).
  9. Lipowska-Bhalla, G., Gilham, D. E., Hawkins, R. E., Rothwell, D. G. Isolation of tumor antigen-specific single-chain variable fragments using a chimeric antigen receptor bicistronic retroviral vector in a Mammalian screening protocol. Hum Gene Ther Methods. 24 (6), 381-391 (2013).
  10. Alonso-Camino, V., et al. CARbodies: Human antibodies against cell surface tumor antigens selected from repertoires displayed on T cell chimeric antigen receptors. Mol Ther Nucleic Acids. 2 (5), e93 (2013).
  11. Jahan, F., et al. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. Front Mol Med. 3, 1070384 (2023).
  12. Subham, S., et al. EGFR as a potent CAR T target in triple negative breast cancer brain metastases. Breast Cancer Res Treat. 197 (1), 57-69 (2023).
  13. Guedan, S., Calderon, H., Posey, A. D., Maus, M. V. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 12, 145-156 (2019).
  14. Zaritskaya, L., Shurin, M. R., Sayers, T. J., Malyguine, A. M. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines. 9 (6), 601-616 (2010).
  15. Shan, X., et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol. 20 (18), 6945-6957 (2000).
  16. Wu, W., et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell. 182 (4), 855-871 (2020).
  17. Wang, D. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight. 3 (10), e99048 (2018).
  18. Haggerty, T. J., Dunn, I. S., Rose, L. B., Newton, E. E., Kurnick, J. T. A screening assay to identify agents that enhance T-cell recognition of human melanomas. Assay Drug Dev Technol. 10 (2), 187-201 (2012).
  19. Spencer, V. A., Kumar, S., Paszkiet, B., Fein, J., Zmuda, J. F. Cell culture media for fluorescence imaging: Striking the right balance between signal strength and long-term cell health. Genetic Engineer Biotech News. 34 (10), 16-18 (2014).
  20. . Immune Cell Killing Assays for Live-Cell Analysis Available from: https://www.sartorius.com/en/applications/life-science-research/cell-analysis/live-cell-assays/cell-function/immune-cell-killing (2023)
  21. Kessel, S., et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol. 22 (4), 454-465 (2017).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

In vitro Jurkat CAR T CAR CAR CAR T CAR CAR PBMC T

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved