サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The biology of intermuscular adipose tissue (IMAT) is largely unexplored due to the limited accessibility of human tissue. Here, we present a detailed protocol for nuclei isolation and library preparation of frozen human IMAT for single nuclei RNA sequencing to identify the cellular composition of this unique adipose depot.

Abstract

Intermuscular adipose tissue (IMAT) is a relatively understudied adipose depot located between muscle fibers. IMAT content increases with age and BMI and is associated with metabolic and muscle degenerative diseases; however, an understanding of the biological properties of IMAT and its interplay with the surrounding muscle fibers is severely lacking. In recent years, single-cell and nuclei RNA sequencing have provided us with cell type-specific atlases of several human tissues. However, the cellular composition of human IMAT remains largely unexplored due to the inherent challenges of its accessibility from biopsy collection in humans. In addition to the limited amount of tissue collected, the processing of human IMAT is complicated due to its proximity to skeletal muscle tissue and fascia. The lipid-laden nature of the adipocytes makes it incompatible with single-cell isolation. Hence, single nuclei RNA sequencing is optimal for obtaining high-dimensional transcriptomics at single-cell resolution and provides the potential to uncover the biology of this depot, including the exact cellular composition of IMAT. Here, we present a detailed protocol for nuclei isolation and library preparation of frozen human IMAT for single nuclei RNA sequencing. This protocol allows for the profiling of thousands of nuclei using a droplet-based approach, thus providing the capacity to detect rare and low-abundant cell types.

Introduction

Intermuscular adipose tissue (IMAT) is an ectopic adipose depot residing between and around muscle fibers1. As described in detail in a recent review by Goodpaster et al., IMAT can be detected using high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) (Figure 1A,B) and is found around and within muscle fibers throughout the entire body1. The quantity of IMAT varies greatly between individuals and is influenced by BMI, age, sex, race, and sedentariness2,3,4. ....

Protocol

The sample used for this protocol was part of the Study of Muscle, Mobility, and Aging (SOMMA)15, which was approved by the Western IRB-Copernicus Group (WCG) Institutional Review Board and was carried out in accordance with the Declaration of Helsinki. Participants provided written informed consent for their participation in the study.

NOTE : This protocol is adapted from a previous protocol using 100 mg of human abdominal subcutaneous adipose tissue on a na.......

Representative Results

This workflow was designed to guide the processing of frozen human IMAT samples to obtain gene expression profiles at single nuclei resolution, enabling cell type identification. Here, one representative IMAT sample from a participant in the SOMMA study is presented.

The first step of any analysis of snRNA-seq data is to evaluate the quality of the data to identify poor-quality nuclei, which should potentially be removed from the dataset. Importantly, the filtering steps and thresholds should .......

Discussion

There are several inherent challenges to working with IMAT. In addition to its limited accessibility, the yield of sample material is often very scarce, and "contamination" of skeletal muscle is almost impossible to avoid. To obtain the best quality sample, one should penetrate the muscle fascia when inserting the biopsy needle (to make sure not to collect subcutaneous adipose tissue) and remove as much muscle tissue as possible by dissecting the sample under a microscope immediately after collection, followed by.......

Acknowledgements

The authors would like to acknowledge Bryan Bergman, PhD at University of Colorado for providing the image of the IMAT biopsy in Figure 1C from the MoTrIMAT study (R01AG077956). We are grateful for the Study of Muscle, Mobility and Aging providing the IMAT sample from which data is shown in the representative results section. The National Institute on Aging (NIA) funded the Study of Muscle, Mobility and Aging (SOMMA; R01AG059416) and its ancillary studies SOMMA AT (R01AG066474) and SOMMA Knee OA (R01AG070647). Study infrastructure support was funded in part by NIA Claude D. Pepper Older American Independence Centers at University of Pittsburgh (P30AG024827) and Wake F....

Materials

NameCompanyCatalog NumberComments
0.2 µm corning syringe filters Millipore SigmaCLS431229
1.7 mL DNA LoBind tubesEppendorf22431021low-bind tubes
10% Tween 20Bio-Rad1662404
100x protease inhibitorThermo Fisher Scientific78437
10X Magnetic Separator10X Genomics230003
10X Vortex Adapter10X Genomics330002
15 mL canonical tubesSarstedt6,25,54,502
2100 Bioanalyzer AgilentG2939BA
50 mL conical tubesSarstedt6,25,47,254
CellRangerGenomicsN/A
Chromium iX accesory kit10X GenomicsPN1000323
Chromium iX Controller10X GenomicsPN1000326
Chromium Next GEM Chip G Single Cell Kit 10X GenomicsPN1000127
Chromium Next GEM Single Cell 3'  Kit v 3.110X GenomicsPN1000269
Chromium Next GEM Single Cell 3' Gel Bead Kit v3.1 10X GenomicsPN1000129
Chromium Next GEM Single Cell GEM Kit v3.110X GenomicsPN1000130
Countess 3 Automated Cell CounterThermo Fisher ScientificAMQAX2000Automated cell counter
Countess cell counting chamber slidesThermo Fisher ScientificC10228
DoubletFinderN/A
DPBS (no calcium, no magnesium)Thermo Fisher Scientific14190144
DTTThermo Fisher ScientificR0861
Dual Index Kit TT Set A, 96 rxns10X GenomicsPN1000215
Dynabeads MyOne SILANE 10X GenomicsPN2000048
Falcon 100 µm Cell strainerCorning Life Science352360
Falcon 40 µm Cell strainerCorning Life Science352340
Glycerin (glycerol), 50% (v/v) Aqueous SolutionRicca Chemical Company3290-32
KCLThermo Fisher ScientificAM9640G
Library Construction Kit v3.110X GenomicsPN1000196
MACS SmartStrainers (30µm)Miltenyi Biotec130-098-458
Mastercycler Nexus Gradient Thermal cyclerEppendorf6331000017
MgCl2AmbionAM9530G
Mortar and pestelHealth care logistics 14075
NucBlue Live Ready Probes ReagentThermo Fisher ScientificR37605
Nuclease Free Water (not DEPC treated)Thermo Fisher ScientificAM9930
Probumin Bovine Serum Albumin Fatty Acid Free, PowderSigma-Aldrich820024
Qiagen Buffer EBQiagen19086
Ribolock RNAse inhibitorThermo Fisher ScientificEO0382
SeuratN/A
SucroseSigma-AldrichS0389
SUPERasin 20 U/µLThermo Fisher ScientificAM2695
ThermoMixer CEppendorf 5382000015
Tissue homogenizerGlass-Col099C K54
Tris buffer pH 8.0Thermo Fisher ScientificAM9855G
Triton X-100Thermo Fisher ScientificAC327372500
UltraPure 0.5M EDTA pH 8.0Gibco15575020

References

  1. Goodpaster, B. H., Bergman, B. C., Brennan, A. M., Sparks, L. M. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol. 19 (5), 285-298 (2023).
  2. Sparks, L. M., Goodpaster, B. H., Bergman, B. C.

Explore More Articles

Intermuscular Adipose Tissue IMATSingle nuclei RNA SequencingAdipocyteSkeletal MuscleTissue CompositionTissue AccessibilityLipid ladenNuclei IsolationFrozen TissueDroplet based SequencingCell Type specific Analysis

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved