This paper describes a striaghforward and efficient method of intubating mice for pulmonary function measurements or pulmonary instillation, that allows the mice to recover and be studied at later times. The procedure involves an inexpensive fiberoptic light source that directly illuminates the trachea.
We demonstrate: (1) procedures for collection of salivary samples in cognitive impaired older adults by family caregivers in the home setting, (2) procedures for measuring stress activity via salivary cortisol and alpha amylase, and (3) representative profiles. Protocols that allow researchers to study stress-linked processes advance our understanding of biological sensitivity and susceptibility.
The term anastasis refers to the phenomenon in which dying cells reverse a cell suicide process at a late stage, repair themselves, and ultimately survive. Here we demonstrate protocols for detecting and tracking cells that undergo anastasis.
We describe a means to quickly and simply measure the lung diffusing capacity in mice and show that it is sufficiently sensitive to phenotype changes in multiple common lung pathologies. This metric thus brings direct translational relevance to the mouse models, since diffusing capacity is also easily measured in humans.
Here we present a protocol to simply and reliably measure the lung pressure-volume curve in mice, showing that it is sufficiently sensitive to detect phenotypic parenchymal changes in two common lung pathologies, pulmonary fibrosis and emphysema. This metric provides a means to quantify the lung’s structural changes with developing pathology.
The goal of this paper is to describe simple methods that will greatly aid in the setup and analysis of mouse lungs with lung cancer or other pathologies. We present 3 protocols to simply and reliably carry out lung instillations, fixation, and lung volume measurements.
To detect healthy cells in whole animals that contain low levels of caspase activity, the highly sensitive biosensor designated CaspaseTracker was generated for Drosophila. Caspase-dependent biosensor activity is detected in long-lived healthy cells throughout the internal organs of adult animals reared under optimized conditions in the absence of death stimuli.
Anastasis is technically challenging to detect in vivo because the cells that have reversed the cell death process can be morphologically indistinguishable from normal healthy cells. Here we describe protocols for detecting and tracking cells that undergo anastasis in live animals by using our newly developed in vivo CaspaseTracker biosensor system.
The goal of this tubule squash technique is to rapidly assess cytological features of developing mouse spermatocytes while preserving cellular integrity. This method allows for the study of all stages of spermatogenesis, and can be easily implemented alongside other biochemical and molecular biological approaches for the study of mouse meiosis.
Oogenesis in mammals is known to be error-prone, particularly due to chromosome missegregation. This manuscript describes chromatin spread preparation methods for mouse prophase, metaphase I and II-staged oocytes. These fundamental techniques allow for the study of chromatin-bound proteins and chromosome morphology throughout mammalian oogenesis.
This article describes a technique for rapid human temporal bone sectioning that utilizes a microsaw with twin diamond blades to generate thin slices for rapid decalcification and analysis of temporal bone immunohistochemistry.
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유