This article demonstrates an experimental design in which whole-body animated characters are used in conjunction with functional magnetic resonance imaging (fMRI) to investigate the neural correlates of observing virtual social interactions.
We present a protocol that allows investigation of the neural correlates of recollecting emotional autobiographical memories, using functional magnetic resonance imaging. This protocol can be used with both healthy and clinical participants.
We present a protocol that allows investigation of the neural correlates of deliberate and automatic emotion regulation, using functional magnetic resonance imaging. This protocol can be used in healthy participants, both young and older, as well as in clinical patients.
We present a protocol that uses functional magnetic resonance imaging to investigate the neural correlates of the memory-enhancing effect of emotion. This protocol allows identification of brain activity specifically linked to memory-related processing, contrary to more general perceptual processing, and can be used with healthy and clinical populations.
We present a protocol that allows investigation of the neural mechanisms mediating the detrimental impact of emotion on cognition, using functional magnetic resonance imaging. This protocol can be used with both healthy and clinical participants.
The giant ciliate Stentor coeruleus is a classical system for studying regeneration and wound healing in single cells. By imaging Stentor cells simultaneously at low and high magnification it is possible to measure cytoplasmic flows before, during, and after wounding.
The present work provides a comprehensive set of guidelines for manually tracing the medial temporal lobe (MTL) structures. This protocol can be applied to research involving structural and/or combined structural-functional magnetic resonance imaging (MRI) investigations of the MTL, in both healthy and clinical groups.
Single fluorophores can be localized with nanometer precision using FIONA. Here a summary of the FIONA technique is reported, and how to carry out FIONA experiments is described.
Following exposure to specific environmental stressors, the nematode Caenorhabditis elegans undergoes extensive phenotypic plasticity to enter into a stress-resistant ‘dauer’ juvenile stage. We present methods for the controlled induction and imaging of neuroplasticity during dauer.
Traditional techniques for fabricating polyacrylamide (PA) gels containing fluorescent probes involve sandwiching a gel between an adherent surface and a glass slide. Here, we show that coating this slide with poly-D-lysine (PDL) and fluorescent probes localizes the probes to within 1.6 µm from the gel surface.
Using multiple angles to cut the mouse pup brain, we improve upon a previously-described acute brain slice which captures the connections between most of the major auditory midbrain and forebrain structures.
The protocol for a novel ion concentration polarization (ICP) platform that can stop the propagation of the ICP zone, regardless of the operating conditions is described. This unique ability of the platform lies in the use of merging ion depletion and enrichment, which are two polarities of the ICP phenomenon.
SOM underlies many soil functions and processes, but its characterization by FTIR spectroscopy is often challenged by mineral interferences. The described method can increase the utility of SOM analysis by FTIR spectroscopy by subtracting mineral interferences in soil spectra using empirically obtained mineral reference spectra.
Post-transcriptional modifications of RNA represent an understudied layer of translation regulation that has recently been linked to central nervous system plasticity. Here, sample preparation and liquid chromatography-tandem mass spectrometry approach is described for simultaneous characterization of numerous RNA modifications in single neurons.
The study of cognitive planning combining EEG and eye-tracking systems provides a multimodal approach to investigate the neural mechanisms that mediate cognitive control and goal-directed behavior in humans. Here, we describe a protocol for investigating the role of brain oscillations and eye movements in planning performance.
Methods to measure ALDH1A1 activity in live cells are critical in cancer research due to its status as a biomarker of stemness. In this study, we employed an isoform-selective fluorogenic probe to determine the relative levels of ALDH1A1 activity in a panel of five ovarian cancer cell lines.
This article presents a detailed protocol for dissecting uterosacral ligaments and other pelvic floor tissues, including the cervix, rectum, and bladder in mice, to expand the study of female reproductive tissues.
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유