Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Synthetic cystic fibrosis sputum medium (SCFM2) can be utilized in combination with both confocal laser scanning microscopy and fluorescence-activated cell sorting to observe bacterial aggregates at high resolution. This paper details methods to assess aggregate populations during antimicrobial treatment as a platform for future studies.
Pseudomonas aeruginosa (Pa) is one of the most common opportunistic pathogens associated with cystic fibrosis (CF). Once Pa colonization is established, a large proportion of the infecting bacteria form biofilms within airway sputum. Pa biofilms isolated from CF sputum have been shown to grow in small, dense aggregates of ~10-1,000 cells that are spatially organized and exhibit clinically relevant phenotypes such as antimicrobial tolerance. One of the biggest challenges to studying how Pa aggregates respond to the changing sputum environment is the lack of nutritionally relevant and robust systems that promote aggregate formation. Using a synthetic CF sputum medium (SCFM2), the life history of Pa aggregates can be observed using confocal laser scanning microscopy (CLSM) and image analysis at the resolution of a single cell. This in vitro system allows the observation of thousands of aggregates of varying size in real time, three dimensions, and at the micron scale. At the individual and population levels, having the ability to group aggregates by phenotype and position facilitates the observation of aggregates at different developmental stages and their response to changes in the microenvironment, such as antibiotic treatment, to be differentiated with precision.
Pseudomonas aeruginosa (Pa) is an opportunistic pathogen that establishes chronic infections in immune-compromised individuals. For those with the genetic disease cystic fibrosis (CF), these infections can span the course of a lifetime. CF causes the buildup of a viscous, nutrient-rich sputum in the airways, which becomes colonized by a variety of microbial pathogens over time. Pa is one of the most prevalent CF pathogens, colonizing the airways in early childhood and establishing difficult-to-treat infections1. Pa remains a significant clinical problem and is considered a leading cause of mortality in those with CF, despite improved therapy regimens in recent years2,3. This persistence phenotype and increasing antibiotic tolerance have earned Pa a place in a group of pathogens identified by both the Centers for Disease Control (CDC) and the World Health Organization (WHO) as research priorities for the development of new therapeutic strategies-the ESKAPE pathogens4.
Like other ESKAPE pathogens, acquired antibiotic resistance is common in Pa, but there are also many intrinsic properties that contribute to Pa antimicrobial tolerance. Among these is the ability of Pa to form aggregates-highly dense clusters of ~10-1,000 cells, which can be observed in multiple infections, including CF patient sputum5,6. Similar to Pa studied in other biofilm systems, Pa aggregates display clinically relevant phenotypes such as increased resistance to antibiotics and activation of cell-cell communication (quorum sensing (QS)). For example, aggregates of Pa have been shown to use QS-regulated behaviors to combat other microbes as well as tolerate antimicrobial treatments such as the production of pyocyanin7. The ability to study such behaviors offers an exciting insight into bacterial ecosystems in an environment similar to the one in which they exist in the human body.
One of the biggest challenges to studying how Pa aggregates respond to the changing sputum environment is the lack of nutritionally relevant and robust systems that promote aggregate formation. Much of what is known about Pa has been discovered using in vitro systems in which cells grow planktonically or in a characteristic surface-attached, "mushroom" architecture that has not been observed in vivo8. While classical biofilm growth models, such as flow cells or solid agar, have yielded extensive and valuable knowledge about bacterial behaviors and mechanisms of antibiotic tolerance, these findings do not always translate in vivo. Many in vitro models have a limited ability to mimic the growth environment of the human infection site, necessitating costly in vivo studies. In turn, many in vivo models lack the flexibility and resolution afforded by in vitro techniques.
Synthetic cystic fibrosis sputum (SCFM2) is designed to provide an environment for Pa growth similar to that experienced during chronic infection in the CF lung. SCFM2 includes nutritional sources identified in expectorated CF sputa in addition to mucin, lipids, and DNA. Pa growth in SCFM2 requires a near identical gene set to that required for growth in actual sputum and supports natural Pa aggregate formation9,10. After inoculation, planktonic cells form aggregates that increase in size through expansion. Individual cells (referred to as migrants) are released from aggregates, migrate to uncolonized areas, and form new aggregates10. This life history can be observed using CLSM and image analysis at the resolution of a single cell. Aggregates of Pa formed in SCFM2 are of similar sizes to those observed in the CF lung10. This model allows the observation of multiple aggregates of varying size in real-time and in three dimensions at the micron scale. Time-lapse microscopy allows the tracking of thousands (~50,000) of aggregates in one experiment. The use of image analysis software allows the quantification of aggregate phenotypes from micrographs, including aggregate volume, surface area, and position in three dimensions to the nearest 0.1 μm, both at the individual aggregate and population levels. Having the ability to group aggregates by phenotype and position allows the differentiation of aggregates at different developmental stages with precision, as well as their response to a changing microenvironment6,11.
The application of SCFM2 to study Pa aggregates in low volume and high-throughput assays make it a flexible, cost-effective model. As a defined medium, SCFM2 offers uniformity and reproducibility across multiple platforms, providing a nutritionally and physically relevant method to study Pa aggregates in vitro9. Applications include its use in combination with CLSM to observe spatial organization and antibiotic tolerance at high resolution (as described in this methods paper). The ability to perform experiments that provide real-time, micron-scale data allows the study of intra-species and inter-species interactions as they may occur in vivo. For example, SCFM2 has previously been used to study the spatial dynamics of cell-cell communication in aggregate populations via a network of systems utilized by Pa to regulate multiple genes that contribute to virulence and pathogenesis6.
Figure 1: Graphical depiction of the main experimental steps. (A) SCFM2 is inoculated with Pa cells and allowed to form aggregates in a glass-bottomed culture dish. (B) Aggregates are transferred to the confocal microscope, and antibiotic is added. Depicted are three technical replicates (chambers 1-3) and a control well (4) of inoculated SCFM2 without antibiotic treatment. Aggregates are imaged using CLSM over the course of 18 h. (C) After the initial 18-h imaging, aggregates are treated with propidium iodide to visualize dead cells and imaged using CLSM (D) Aggregates with desired phenotype are separated from SCFM2 using FACS. Abbreviations: SCFM2 = synthetic cystic fibrosis sputum medium; Pa = Pseudomonas aeruginosa; CLSM = confocal laser scanning microscopy; FACS = fluorescence-activated cell sorting. Please click here to view a larger version of this figure.
Here, the utility of SCFM2 to study the impact of antibiotic treatment on Pa aggregates in real time is demonstrated, followed by the use of a cell-sorting approach to isolate populations of aggregates with distinct phenotypes for downstream analysis (Figure 1).
Access restricted. Please log in or start a trial to view this content.
1. Prepare synthetic cystic fibrosis medium (SCFM2)
NOTE: Preparation of SCFM2 comprises three main stages outlined below (Figure 2). For full details and references, see9,10,12.
Figure 2: Preparation and inoculation of SCFM2 medium. (A) Buffered base is prepared using salts and amino acids listed in Table 1 and Table 2. Buffered base can be stored at 4 °C for up to 30 days, but must be protected from light exposure. (B) Mucin and DNA are added to an aliquot of buffered base and dissolved into solution overnight at 4 °C. (C) Lipid and additional stocks are added to the overnight solution and incubated at 37 °C with agitation at 250 rpm for 20 min. SFCM2 is then inoculated with washed, log phase cells at an OD600 = 0.05. Abbreviations: SCFM2 = synthetic cystic fibrosis sputum medium. Please click here to view a larger version of this figure.
2. Real time assessment of antimicrobial tolerance in bacterial aggregates
3. Visualizing aggregates during antibiotic treatment with confocal laser scanning microscopy (CLSM)
NOTE: This section describes the use of confocal laser scanning microscope and image capture software for the imaging of Pa aggregates in SCFM2. The goal is to observe and characterize the remaining (tolerant) bacterial biomass after treatment with antibiotics. The steps outlined can be performed with success on other confocal microscopes, although the instrument operating manual should be referenced for specific guidance.
4. Propidium iodide staining of Pa aggregates
NOTE: Propidium iodide (PI) is commonly utilized as a staining reagent to identify non-viable (dead) bacterial cells in culture. Here, it is used to identify aggregates sensitive to antibiotic treatment applied in section 3. Throughout this protocol, the expression and detection of GFP in Pa cells is used as the main proxy for cell viability. This final step allows confocal imaging to be used once more to identify the spatial positioning of live/dead aggregates in relation to each other. Additionally, aggregates are identified as live/dead for further downstream cell sorting in section 5.
5. Isolating live cells from aggregates using a FACS approach
NOTE: FACS presents a powerful platform to sort and isolate groups of cells according to a fluorescently tagged phenotype. Here, FACS is used to isolate live (antibiotic tolerant) aggregates from non-viable aggregates.
6. Image analysis
NOTE: Time-lapse microscopy generates large amounts of data. An 18-h experiment for the observation of Pa aggregates in SCFM2 identifies ~50,000 aggregates over time, which have the potential to be characterized for volume and spatial positioning. Use an image analysis software to quantify aggregate dynamics in SCFM2:
Access restricted. Please log in or start a trial to view this content.
This work details methods to observe Pa aggregates at a high resolution and in an environment similar to that of chronic infection of the CF lung9,10,12. SCFM2 provides an in vitro system that promotes natural aggregation of Pa cells in sizes similar to those observed during actual infection10. The adaptability of SCFM2 as a defined medium can be leveraged to approach many resea...
Access restricted. Please log in or start a trial to view this content.
This work has introduced methodologies that can be combined to study bacterial aggregate populations in the presence and absence of antibiotic treatment. High-resolution CLSM allows the visualization of changes in aggregate biomass and the structural orientation of aggregates over real time when exposed to antibiotics. In addition, physical and structural features of the biomass that remain after treatment with antibiotics can be quantified, with the goal to correlate these observations with future gene expression studie...
Access restricted. Please log in or start a trial to view this content.
The authors have no conflicts of interest.
S.E.D is supported by start-up funds provided by the Department of Molecular Medicine, The University of South Florida, as well as a CFF research grant (DARCH19G0) the N.I.H (5R21AI147654 - 02 (PI, Chen)) and the USF Institute on Microbiomes. We thank the Whiteley lab for ongoing collaboration involving data sets related to this manuscript. We thank Dr. Charles Szekeres for facilitating FACS sorting. Figures were created by A.D.G and S.E.D using Biorender.com.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Amino acids | |||
Alanine | Acros Organics | 56-41-7 | |
Arginine HCl | MP | 1119-34-2 | |
Asparagine | Acros Organics | 56-84-8 | Prepared in 0.5 M NaOH |
Cystine HCl | Alfa Aesar | L06328 | |
Glutamic acid HCl | Acros Organics | 138-15-8 | |
Glycine | Acros Organics | 56-40-6 | |
Histidine HCl H2O | Alfa Aesar | A17627 | |
Isoleucine | Acros Organics | 73-32-5 | |
Leucine | Alfa Aesar | A12311 | |
Lysine HCl | Alfa Aesar | J62099 | |
Methionine | Acros Organics | 63-68-3 | |
Ornithine HCl | Alfa Aesar | A12111 | |
Phenylalanine | Acros Organics | 63-91-2 | |
Proline | Alfa Aesar | A10199 | |
Serine | Alfa Aesar | A11179 | |
Threonine | Acros Organics | 72-19-5 | |
Tryptophan | Acros Organics | 73-22-3 | Prepared in 0.2 M NaOH |
Tyrosine | Alfa Aesar | A11141 | Prepared in 1.0 M NaOH |
Valine | Acros Organics | 72-18-4 | |
Antibiotic | |||
Carbenicillin | Alfa Aesar | J6194903 | |
Day-of Stocks | |||
CaCl2 * 2H2O | Fisher Chemical | C79-500 | |
Dextrose (D-glucose) | Fisher Chemical | 50-99-7 | |
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) | Fisher (Avanti Polar Lipids) | 4235-95-4 | shake 15-20 min at 37 °C to evaporate chloroform |
FeSO4 * 7H2O | Acros Organics | 7782-63-0 | this stock equals 1 mg/mL, MUST make fresh |
L-lactic acid | Alfa Aesar | L13242 | pH stock to 7 with NaOH |
MgCl2 * 6H2O | Acros Organics | 7791-18-6 | |
N-acetylglucosamine | TCI | A0092 | |
Prepared solids | |||
Porcine mucin | Sigma | M1778-100G | UV-sterilize |
Salmon sperm DNA | Invitrogen | 15632-011 | |
Stain | |||
Propidium iodide | Alfa Aesar | J66764MC | |
Salts | |||
K2SO4 | Alfa Aesar | A13975 | |
KCl | Alfa Aesar | J64189 | add solid directly to buffered base |
KNO3 | Acros Organics | 7757-79-1 | |
MOPS | Alfa Aesar | A12914 | add solid directly to buffered base |
NaCl | Fisher Chemical | S271-500 | add solid directly to buffered base |
Na2HPO4 | RPI | S23100-500.0 | |
NaH2PO4 | RPI | S23120-500.0 | |
NH4Cl | Acros Organics | 12125-02-9 | add solid directly to buffered base |
Consumables | |||
Conical tubes (15 mL) | Olympus plastics | 28-101 | |
Conical tubes (50 mL) | Olympus plastics | 28-106 | |
Culture tubes w/air flow cap | Olympus plastics | 21-129 | |
35 mm four chamber glass-bottom dish | CellVis | NC0600518 | |
Luria Bertani (LB) broth | Genessee Scientific | 11-118 | |
Phosphate-buffered saline (PBS) | Fisher Bioreagents | BP2944100 | |
Pipet tips (p200) | Olympus plastics | 23-150RL | |
Pipet tips (p1000) | Olympus plastics | 23-165RL | |
Serological pipets (5 mL) | Olympus plastics | 12-102 | |
Serological pipets (25 mL) | Olympus plastics | 12-106 | |
Serological pipets (50 mL) | Olympus plastics | 12-107 | |
Ultrapure water (RNase/DNase free); nanopure water | Genessee Scientific | 18-194 | Nanopure water used for preparation of solutions in Table 1 |
Syringes (10 mL) | BD | 794412 | |
Syringes (50 mL) | BD | 309653 | |
0.22 mm PES syringe filter | Olympus plastics | 25-244 | |
PS cuvette semi-mico | Olympus plastics | 91-408 | |
Software | |||
Biorender | To prepare the figures | ||
FacsDiva6.1.3 | Becton Dickinson, San Jose, CA | ||
Imaris | Bitplane | version 9.6 | |
Zen Black | |||
Equipment | |||
FacsAriallu | Becton Dickinson, San Jose, CA | ||
LSM 880 confocal laser scanning microscope | Zeiss |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone