Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
An optimal sucrose concentration was determined for the extraction of liver glycogen using sucrose density gradient centrifugation. The addition of a 10 min boiling step to inhibit glycogen-degrading enzymes proved beneficial.
Liver glycogen is a hyperbranched glucose polymer that is involved in the maintenance of blood sugar levels in animals. The properties of glycogen are influenced by its structure. Hence, a suitable extraction method that isolates representative samples of glycogen is crucial to the study of this macromolecule. Compared to other extraction methods, a method that employs a sucrose density gradient centrifugation step can minimize molecular damage. Based on this method, a recent publication describes how the density of the sucrose solution used during centrifugation was varied (30%, 50%, 72.5%) to find the most suitable concentration to extract glycogen particles of a wide variety of sizes, limiting the loss of smaller particles. A 10 min boiling step was introduced to test its ability to denature glycogen degrading enzymes, thus preserving glycogen. The lowest sucrose concentration (30%) and the addition of the boiling step were shown to extract the most representative samples of glycogen.
Glycogen is a complex, hyperbranched polymer of glucose found in animals, fungi, and bacteria1. In mammals, liver glycogen functions as a blood glucose buffer, preserving homeostasis, while muscle glycogen acts as a short-term glucose reservoir to provide energy directly2. The structure of glycogen is often described by three levels (shown in Figure 1): 1. Linear chains are formed by glucose monomers via (1→4)-α glycosidic bonds, with branch points being connected via (1→6)-α glycosidic bonds; 2. highly branched β particles (~20 nm in diameter) that, especially in ....
Mouse livers used to optimize this procedure21 were from 12 male BKS-DB/Nju background mice (7.2 weeks old, see the Table of Materials). Animal use was approved by Renmin Hospital of Wuhan University Animal Care and Ethics Committee, IACUC Issue No. WDRM 20181113.
1 Animal tissues
2. Preparation of buffer and reagents
While the procedure described above is for the most optimal method (30% sucrose with the addition of a 10min boiling step), data are provided here for glycogen extracted via three sucrose concentrations (30%, 50%, 72.5%), with and without a boiling step, as previously described21. Following the protocol, the purity, crude yield, and glycogen yield of dry glycogen extracted by different conditions are given in Table 1, reproduced from21. There were no signif.......
Previous studies have shown that the structure of glycogen is important for its properties; for example, the molecular size affects the degradation rate of glycogen10, and the chain length distribution affects its solubility26. To properly understand these relationships, it is important to extract glycogen with a procedure that isolates, as much as possible, a representative and undamaged sample. Traditional methods of extraction utilized either hot alkaline conditions or c.......
The authors have no conflicts of interest to disclose.
The authors are grateful to Mr. Gaosheng Wu and Miss Yunwen Zhu for technical assistance with FACE and Mr. Zhenxia Hu and Mr. Dengbin for technical assistance with SEC. MAS is supported by an Advance Queensland Industry Research Fellowship, Mater Foundation, Equity Trustees, and the L G McCallam Est and George Weaber Trusts. This work was supported by the Priority Academic Program of Jiangsu Higher Education Institutions, a Natural Science Foundation of China grant C1304013151101138, and the 2017 Jiangsu Innovation and Entrepreneurship talents program. Figure 1-5 were created using BioRender.
....Name | Company | Catalog Number | Comments |
8-aminopyrene-1,3,6-trisulfonate (APTS) | SIGMA Aldrich | 9341 | 0.1 M solution |
Acetic acid | SIGMA Aldrich | 695092 | 0.1 M, pH 3.5 solution |
Agilent 1260 Infinity SEC system | Agilent, Santa Clara, CA, USA | Size-exclusion chromatography (SEC) | |
BKS-DB/Nju background mice | Nanjing Biomedical Research Institution of Nanjing University | ||
D-Glucose Assay Kit (GOPOD Format) | Megazyme | K-GLUC | |
Ethylenedinitrilotetraacetic acid (EDTA) | SIGMA Aldrich | 431788 | |
Homogenizer | IKA | T 25 | |
Hydrochloric acid | SIGMA Aldrich | 2104 | 0.1 M solution |
Hydrochloric acid | SIGMA Aldrich | 2104 | 0.1 M solution |
P/ACE MDQ plus system | Ab Sciex, US | Fluorophore-assisted carbohydrate electrophoresis (FACE) | |
Refractive index detector | Optilab UT-rEX, Wyatt, Santa Barbara, CA, USA) | Size-exclusion chromatography (SEC) | |
Sodium acetate | SIGMA Aldrich | 241245 | 1 M, pH 4.5 solution |
Sodium azide | SIGMA Aldrich | S2002 | |
Sodium chloride | SIGMA Aldrich | S9888 | |
Sodium cyanoborohydride | SIGMA Aldrich | 156159 | 1 M solution |
Sodium fluoride | SIGMA Aldrich | 201154 | |
Sodium hydroxide | SIGMA Aldrich | 43617 | 0.1 M solution |
Sodium nitrate | SIGMA Aldrich | NISTRM8569 | |
Sodium pyrophosphate | SIGMA Aldrich | 221368 | |
Sucrose | SIGMA Aldrich | V90016 | |
SUPREMA pre-column, 1,000 and 10,000 columns | Polymer Standards Services, Mainz, Germany | Size-exclusion chromatography (SEC) | |
Trizma | SIGMA Aldrich | T 1503 | |
Ultracentrifuge tubes | Beckman | 4 mL, Open-Top Thinwall Ultra-Clear Tube, 11 x 60 mm |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone