Entrar

Aldehydes and ketones form enols, although only about 1% of the enol is present at the equilibrium for simple monocarbonyl compounds. The enol form is undetectable for acetaldehyde, present as only 1.5 × 10−4 % of acetone, and present as only 1.2% of cyclohexanone. Two kinds of regioisomeric enols are possible for unsymmetrical ketones, and their net composition is 1% at equilibrium. This instability is due to the lower bond energy of C=C than the C=O group. The additional instability of enols derived from esters and acids can be attributed to losing the stabilizing resonance between the carboxylate oxygen and the carbonyl p electrons present in the carbonyl form.

β-Dicarbonyl molecules with two carbonyl groups separated by a carbon atom possess more significant amounts of enol at equilibrium owing to the higher stability of the enol. For example, pentane-2,4-dione exists as 76–80% enol for two reasons. Firstly, there is extended delocalization of the conjugated double bond with the other carbonyl group. Secondly, intramolecular hydrogen bonding between the enolic hydroxyl group and the carbonyl oxygen forms a stable 6-membered ring (O⋯H separation = 166 pm). Notably, the methylene group, which two carbonyl groups flank, is preferentially involved in enolization. The alternative enol, 4-hydroxy-4-penten-2-one, is not stable and so is present negligibly at equilibrium. In acyclic ketones, the enol or enolate formed can be either geometrical isomers: (E) or (Z). Protonation on the same face of (E) and (Z) isomers produces enantiomers in solution.

The α hydrogens of esters, nitriles, and 3° amides are acidic, and the corresponding conjugate bases are resonance-stabilized enolates or carbanions. The negative charge is delocalized onto the electronegative oxygen or nitrogen atom lying adjacent to it. Although cyanides need a strong base for deprotonation, its conjugate anion is a linear system like ketene, allene, or carbon dioxide. In the case of primary and secondary amides, the N–H proton is preferentially deprotonated over a C–H proton. As a result, amides are least enolizable among the range of acid derivatives. Therefore, the pKa values of N,N-dimethylacetamide, acetonitrile, ethyl acetate, acetone, acetaldehyde, and acetylacetone are 30, 25, 25, 19.2, 17, and 9, respectively. Primary and secondary amines form enamines, the nitrogen analogs of enols. When enamines are treated with a strong base, aza-enolates are formed, the nitrogen analogs of enolates. Nitroalkanes form enolate-like anions in a weakly basic medium due to their enhanced acidity.

Tags
EnolsEnolatesAldehydesKetonesEquilibriumRegioisomeric EnolsBond EnergyCarbonyl GroupsDicarbonyl MoleculesEnolizationGeometrical IsomersProtonationAcidic HydrogensResonance StabilizationConjugate BasesDeprotonationAmidesEnamines

Do Capítulo 15:

article

Now Playing

15.3 : Tipos de Enóis e Enolatos

Química do Carbono α: Enóis, Enolatos e Enaminas

2.3K Visualizações

article

15.1 : Reatividade de Enóis

Química do Carbono α: Enóis, Enolatos e Enaminas

2.8K Visualizações

article

15.2 : Reatividade de Íons Enolato

Química do Carbono α: Enóis, Enolatos e Enaminas

2.3K Visualizações

article

15.4 : Convenções do Mecanismo do Enolato

Química do Carbono α: Enóis, Enolatos e Enaminas

1.9K Visualizações

article

15.5 : Formação Regiosseletiva de Enolatos

Química do Carbono α: Enóis, Enolatos e Enaminas

2.4K Visualizações

article

15.6 : Efeitos Estereoquímicos da Enolização

Química do Carbono α: Enóis, Enolatos e Enaminas

1.9K Visualizações

article

15.7 : α-Halogenação de Aldeídos e Cetonas Catalisada por Ácido

Química do Carbono α: Enóis, Enolatos e Enaminas

3.4K Visualizações

article

15.8 : α-Halogenação de Aldeídos e Cetonas Promovida por Base

Química do Carbono α: Enóis, Enolatos e Enaminas

3.2K Visualizações

article

15.9 : Halogenação Múltipla de Metil-Cetonas: Reação de Halofórmio

Química do Carbono α: Enóis, Enolatos e Enaminas

1.8K Visualizações

article

15.10 : α-Halogenação de Derivados de Ácido Carboxílico: Visão Geral

Química do Carbono α: Enóis, Enolatos e Enaminas

3.1K Visualizações

article

15.11 : α-Bromação de Ácidos Carboxílicos: Reação Hell-Volhard-Zelinski

Química do Carbono α: Enóis, Enolatos e Enaminas

2.9K Visualizações

article

15.12 : Reações de Compostos α-Halocarbonílicos: Substituição Nucleofílica

Química do Carbono α: Enóis, Enolatos e Enaminas

3.1K Visualizações

article

15.13 : Nitrosação de Enóis

Química do Carbono α: Enóis, Enolatos e Enaminas

2.3K Visualizações

article

15.14 : Formação da Ligação C-C: Visão Geral da Condensação Aldólica

Química do Carbono α: Enóis, Enolatos e Enaminas

13.2K Visualizações

article

15.15 : Reação de Adição Aldólica Catalisada por Base

Química do Carbono α: Enóis, Enolatos e Enaminas

2.9K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados