로그인

Aldehydes and ketones form enols, although only about 1% of the enol is present at the equilibrium for simple monocarbonyl compounds. The enol form is undetectable for acetaldehyde, present as only 1.5 × 10−4 % of acetone, and present as only 1.2% of cyclohexanone. Two kinds of regioisomeric enols are possible for unsymmetrical ketones, and their net composition is 1% at equilibrium. This instability is due to the lower bond energy of C=C than the C=O group. The additional instability of enols derived from esters and acids can be attributed to losing the stabilizing resonance between the carboxylate oxygen and the carbonyl p electrons present in the carbonyl form.

β-Dicarbonyl molecules with two carbonyl groups separated by a carbon atom possess more significant amounts of enol at equilibrium owing to the higher stability of the enol. For example, pentane-2,4-dione exists as 76–80% enol for two reasons. Firstly, there is extended delocalization of the conjugated double bond with the other carbonyl group. Secondly, intramolecular hydrogen bonding between the enolic hydroxyl group and the carbonyl oxygen forms a stable 6-membered ring (O⋯H separation = 166 pm). Notably, the methylene group, which two carbonyl groups flank, is preferentially involved in enolization. The alternative enol, 4-hydroxy-4-penten-2-one, is not stable and so is present negligibly at equilibrium. In acyclic ketones, the enol or enolate formed can be either geometrical isomers: (E) or (Z). Protonation on the same face of (E) and (Z) isomers produces enantiomers in solution.

The α hydrogens of esters, nitriles, and 3° amides are acidic, and the corresponding conjugate bases are resonance-stabilized enolates or carbanions. The negative charge is delocalized onto the electronegative oxygen or nitrogen atom lying adjacent to it. Although cyanides need a strong base for deprotonation, its conjugate anion is a linear system like ketene, allene, or carbon dioxide. In the case of primary and secondary amides, the N–H proton is preferentially deprotonated over a C–H proton. As a result, amides are least enolizable among the range of acid derivatives. Therefore, the pKa values of N,N-dimethylacetamide, acetonitrile, ethyl acetate, acetone, acetaldehyde, and acetylacetone are 30, 25, 25, 19.2, 17, and 9, respectively. Primary and secondary amines form enamines, the nitrogen analogs of enols. When enamines are treated with a strong base, aza-enolates are formed, the nitrogen analogs of enolates. Nitroalkanes form enolate-like anions in a weakly basic medium due to their enhanced acidity.

Tags
EnolsEnolatesAldehydesKetonesEquilibriumRegioisomeric EnolsBond EnergyCarbonyl GroupsDicarbonyl MoleculesEnolizationGeometrical IsomersProtonationAcidic HydrogensResonance StabilizationConjugate BasesDeprotonationAmidesEnamines

장에서 15:

article

Now Playing

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.9 : 메틸 케톤의 다중 할로겐화: Haloform 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

article

15.15 : 염기 촉매 알돌 첨가 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유