É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Aqui, nós descrevemos um protocolo para introduzir um nocaute do gene no amastigotas extracelular de Trypanosoma cruzi, usando o sistema de crispr/Cas9. O phenotype do crescimento pode ser seguido acima pela contagem da pilha da cultura axênicos do amastigotas ou pela proliferação de amastigotas intracelular após a invasão da pilha de anfitrião.
O Trypanosoma cruzi é um parasita protozoário patogénico que causa a doença de Chagas principalmente na América Latina. A fim de identificar um novo alvo de drogas contra o T. cruzi, é importante validar a essencialidade do gene alvo na fase de mamíferos do parasita, o amastigote. Amastigotas de T. cruzi replicam dentro da célula hospedeira; assim, é difícil realizar uma experiência de nocaute sem passar por outros estágios de desenvolvimento. Recentemente, nosso grupo relatou uma condição do crescimento em que o amastigotas pode replicar axenically por até 10 dias sem perder suas propriedades amastigotas-like. Usando esta cultura axênica temporal do amastigotas, nós introduzimos com sucesso grnas diretamente no Cas9-expressando o amastigotas para causar nocautes do gene e analisou seus fenótipos exclusivamente no estágio do amastigotas. Neste relatório, nós descrevemos um protocolo detalhado para produzir in vitro os amastigotes extracelular derivados, e para utilizar a cultura axênicos em um experimento nocaute crispr/Cas9-negociado. O phenotype do crescimento de amastigotas do Knockout pode ser avaliado pela contagem da pilha da cultura axênicos, ou pela réplica do amastigotas intracelular após a invasão da pilha de anfitrião. Este método ignora a diferenciação do estágio do parasita envolvida normalmente em produzir um transgênicas ou um amastigote do knockout. A utilização da cultura do amastigotas axênico temporal tem o potencial de ampliar a liberdade experimental de estudos específicos do estágio em T. cruzi.
O Trypanosoma cruzi é o agente causador da doença de Chagas, predominante principalmente na América Latina1. T. cruzi tem estágios distintos do ciclo de vida enquanto viaja entre um vetor do inseto e um anfitrião mamífero2. T. cruzi Replica como um atividade no intestino médio de um bug triatomíneo sugador de sangue e diferencia-se em um tripomastigota metacíclicos infeccioso em seu intestino posterior antes de ser depositado em um anfitrião humano ou animal. Uma vez que o tripomastigota entra no corpo hospedeiro através do local da mordida ou através de uma membrana mucosa, o parasita invade uma célula hospedeira e se transforma em uma forma redonda flagella-less chamada um amastigote. O amastigotas Replica dentro da célula hospedeira e, eventualmente, diferencia-se em trypomastigote, que explode fora da célula hospedeira e entra na corrente sanguínea para infectar outra célula hospedeira.
Como os agentes quimioterapêuticos atualmente disponíveis, o Benznidazol e o Nifurtimox, causam efeitos colaterais adversos e são ineficazes na fase crônica da doença3, é de grande interesse identificar novos alvos de drogas contra o T. cruzi. Nos últimos anos, o sistema CRISPR/Cas9 tornou-se uma poderosa ferramenta para efetivamente realizar nocaute genético em T. cruzi, seja por transfecção de plasmídeo (s) separado ou único contendo Grna e CAS94, por expressão estável de Cas9 e subsequente introdução de grna5,6,7 ou modelo de transcrição de grna8, ou por eletroporação do complexo pré-formado de grna/Cas9 RNP7,9. Este avanço tecnológico é altamente antecipado para acelerar a pesquisa-alvo de drogas na doença de Chagas.
Para prosseguir com o desenvolvimento da droga, é crucial validar a essencialidade do gene alvo ou a eficácia dos compostos candidatos à droga na amastigotas de T. cruzi, pois é a fase de replicação do parasita no hospedeiro de mamíferos. No entanto, esta é uma tarefa desafiadora, porque amastigotas não podem ser manipuladas diretamente devido à presença de uma célula hospedeira obstrutiva. Em Leishmania, um parasita de protozoário intimamente relacionado ao T. cruzi, um método de cultivo de amastigotas axênico foi desenvolvido e tem sido utilizado em ensaios de triagem de fármacos10,11,12, 13. embora existam algumas discrepâncias na suscetibilidade a compostos entre amastigotas axênicas e amastigotas intracelulares14, a capacidade de manter a cultura axênica, no entanto, fornece valiosas ferramentas experimentais para estudar a biologia básica do estágio clinicamente relevante de Leishmania15,16. No caso do T. cruzi, literaturas quanto à presença de amastigotas extracelulares (ea)17 e produção in vitro de ea17,18,19 datam de décadas atrás. Além disso, a EA é conhecida por ter uma capacidade infecciosa20, embora menos do que a do trypomastigote, e o mecanismo de invasão do hospedeiro amastigota tem sido elucidado nos últimos anos (revisado por Bonfim-Melo et al.21). No entanto, diferentemente da Leishmania, a ea não tinha sido utilizada como ferramenta experimental no T. cruzi, principalmente porque a ea tinha sido considerada como um parasita intracelular obrigatório e, portanto, não tinha sido considerada como "forma replicativa" em uma prática Sentido.
Recentemente, nosso grupo propôs utilizar a EA de T. cruzi como uma cultura axênica temporal22. Amastigotas de T. cruzi tulahuen estirpe pode replicar livre de células hospedeiras em meio iluminado a 37 ° c por até 10 dias sem grande deterioração ou perda de propriedades semelhantes a amastigotas. Durante o período de crescimento livre de hospedeiro, a EA foi utilizada com sucesso para expressão gênica exógena por eletroporação convencional, ensaio de titulação de fármacos com compostos tripanociais e nocaute de CRISPR/Cas9, seguido de monitoramento do fenótipo de crescimento. Neste relatório, nós descrevemos o protocolo detalhado para produzir in vitro o ea derivado e para utilizar o amastigotas axênicos em experimentos do nocaute.
Nota: Uma visão geral de todo o fluxo experimental é descrita na Figura 1.
Figura 1: visão geral do experimento de nocaute usando o ea. Os tripomastigotas cultura-derivados do tecido são colhidos e diferenciados em ea. grna é transfected em Cas9-expressando amastigotas pelo Electroporation, e o phenotype do crescimento do amastigotas do Knockout é avaliado pela replicação axênicos ou pelo replicação intracelular após invasão de células hospedeiras. Por favor clique aqui para ver uma versão maior desta figura.
1. preparações da cultura do parasita
2. diferenciação de tripomastigotas na EA
3. electroporação da EA
4. monitorando o crescimento de células Knockout como amastigotas Axenic
5. monitorando o crescimento de pilhas do Knockout como Amastigotes intracellular
Isolação de tripomastigotas pelo procedimento da nadada-para fora
Para colher tripomastigotas frescas contaminando EAs velhos pelo procedimento da nadada, as pelotas da pilha precisam de ser incubadas pelo menos para 1 h. incubando as pelotas por mais de 2 h não aumenta significativamente o número de tripomastigotas nadando na solução ( Figura 2b). Neste experimento em particular, a porcentagem de tripomastigotas na mistura inicial foi de 38...
Nós demonstramos que a cultura axênicos de amastigotas do T. cruzi pode ser utilizada no nocaute crispr/Cas9-negociado do gene, electroporating o grna diretamente em Cas9-expressando o ea. Desta forma, a essencialidade do gene alvo especificamente no estágio amastigotas pode ser avaliada sem passar por outros estágios de desenvolvimento.
Um outro aspecto benéfico do transfection do amastigotas é a conveniência no teste para um grande número genes do alvo. Uma vez que a cocultu...
Os autores não têm conflito de interesse em divulgar.
Este trabalho foi apoiado em parte por JSPS KAKENHI Grant Number 18K15141 para Y.T.
Name | Company | Catalog Number | Comments |
20% formalin solution | FUJIFILM Wako Pure Chemical | 068-03863 | fixing cells |
25 cm2 double seal cap culture flask | AGC Techno Glass | 3100-025 | |
75 cm2 double seal cap culture flask | AGC Techno Glass | 3110-075 | |
All-in One Fluorescence Microscope | Keyence | BZ-X710 | |
Alt-R CRISPR-Cas9 crRNA (for Control) | IDT | custom made | target sequence = GGACGGCACCTTCATCTACAAGG |
Alt-R CRISPR-Cas9 crRNA (for TcCGM1) | IDT | custom made | target sequence = TAGCCGCGATGGAGAGTTTATGG |
Alt-R CRISPR-Cas9 crRNA (for TcPAR1) | IDT | custom made | target sequence = CGTGGAGAACGCCATTGCCACGG |
Alt-R CRISPR-Cas9 tracrRNA | IDT | 1072532 | to anneal with crRNA |
Amaxa Nucleofector device | LONZA | AAN-1001 | electroporation |
Basic Parasite Nucleofector Kit 2 | LONZA | VMI-1021 | electroporation |
BSA | Sigma-Aldrich | A3294 | component of the medium for in vitro amastigogenesis |
Burker-Turk disposable hemocytometer | Watson | 177-212C | cell counting |
Coster 12-well Clear TC-Treated Multiple Well Plates | Corning | 3513 | |
DMEM | FUJIFILM Wako Pure Chemical | 044-29765 | culture medium |
Fetal bovine serum, Defined | Hyclone | SH30070.03 | heat-inactivate before use |
G-418 Sulfate Solution | FUJIFILM Wako Pure Chemical | 077-06433 | selection of transformant |
Hemin chloride | Sigma-Aldrich | H-5533 | component of LIT medium |
Hoechst 33342 | Thermo Fisher Scientific | H3570 | staining of nuclei |
Liver infusion broth, Difco | Becton Dickinson | 226920 | component of LIT medium |
MES | FUJIFILM Wako Pure Chemical | 349-01623 | component of the medium for in vitro amastigogenesis |
PBS (–) | FUJIFILM Wako Pure Chemical | 166-23555 | |
Propidium Iodide | Sigma-Aldrich | P4864-10ML | staining of dead cells |
RPMI 1646 | Sigma-Aldrich | R8758 | medium for metacyclogenesis |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados