É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Este artigo descreve um protocolo para determinar diferenças no estado basal redox e respostas redox a perturbações agudas em neurônios hipocampais primários e corticais usando microscopia viva confocal. O protocolo pode ser aplicado a outros tipos de células e microscópios com modificações mínimas.
A homeostase mitocondrial redox é importante para a viabilidade e a função neuronais. Embora as mitocôndrias contenham vários sistemas redox, a glutothione tampão de tiool-dissulfeto altamente abundante é considerada um jogador central em defesas antioxidantes. Portanto, medir o potencial mitocondrial glutatione redox fornece informações úteis sobre o status de redox mitocondrial e estresse oxidativo. Glutaredoxin1-roGFP2 (Grx1-roGFP2) é um indicador proporção de proporção geneticamente codificado e verde (GFP) do potencial de glutathione redox que tem dois picos de excitação sensíveis ao estado-redox a 400 nm e 490 nm com um único pico de emissão de 510 nm. Este artigo descreve como realizar microscopia ao vivo confocal de Grx1-roGFP2 com destino a mitocôndrias em neurônios hipocampais e corticais primários. Descreve como avaliar o potencial de glutationo mitocondrial de estado estável (por exemplo, comparar estados da doença ou tratamentos de longo prazo) e como medir as alterações de redox em tratamentos agudos (usando a droga excitotóxica N-metil-D-aspartate (NMDA) como exemplo). Além disso, o artigo apresenta co-imagem de Grx1-roGFP2 e o indicador potencial da membrana mitocondrial, tetrametilrhodamina, éster etílico (TMRE), para demonstrar como o Grx1-roGPF2 pode ser multiplexado com indicadores adicionais para análises multiparamétricas. Este protocolo fornece uma descrição detalhada de como (i) otimizar as configurações do microscópio de varredura a laser confocal, (ii) aplicar medicamentos para estimulação seguido de calibração de sensores com diamide e dithiothreitol, e (iii) analisar dados com ImageJ/FIJI.
Várias enzimas mitocondriais importantes e moléculas de sinalização estão sujeitas à regulação de thiol redox1. Além disso, as mitocôndrias são uma grande fonte celular de espécies reativas de oxigênio e são seletivamente vulneráveis a danos oxidativos2. Assim, o potencial mitocondrial redox afeta diretamente bioenergésicos, sinalização celular, função mitocondrial e, finalmente, viabilidade celular3,4. A matriz mitocondrial contém altas quantidades (1-15 mM) da glutationa tampão de tampo de tiol-dissulfeto (GSH) para manter a homeostase redox e montar defesas antioxidantes5,6. O GSH pode ser covalentemente ligado a proteínas-alvo (S-glutathionylation) para controlar seu status e atividade redox e é usado por uma gama de enzimas desintoxificantes que reduzem proteínas oxidadas. Portanto, o potencial mitocondrial glutathione redox é um parâmetro altamente informativo ao estudar a função mitocondrial e a fisiopatologia.
roGFP2 é uma variante de GFP que foi tornada sensível ao redox pela adição de dois cisteínas expostas à superfície que formam um par de dithiol-dissulfeto artificial7,8. Tem um único pico de emissão em ~510 nm e dois picos de excitação em ~400 nm e 490 nm. É importante ressaltar que as amplitudes relativas dos dois picos de excitação dependem do estado redox do roGFP2 (Figura 1), tornando esta proteína um sensor ratiométrico. No sensor Grx1-roGFP2, a glutaredoxina humana-1 (Grx1) foi fundida ao N-terminus de roGFP29,10. O acessório covalent da enzima Grx1 ao roGFP2 proporciona duas grandes melhorias do sensor: torna a resposta do sensor específica para o par de glutationa redox GSH/GSSG (Figura 1), e acelera o equilíbrio entre GSSG e roGFP2 por um fator de pelo menos 100.0009. Portanto, o Grx1-roGFP2 permite imagens específicas e dinâmicas do potencial de glutationa celular redox.
As imagens grx1-roGFP2 podem ser realizadas em uma ampla gama de microscópios, incluindo microscópios de fluorescência de campo largo, microscópios confocal de disco giratório e microscópios confocal de varredura a laser. A expressão do sensor nos neurônios primários pode ser alcançada por vários métodos que incluem lipofecção11, coprecipitação de DNA/cálcio-fosfato12, transferência genética mediada por vírus ou uso de animais transgênicos como fonte celular (Figura 2). Vírus adeno associados a adeninantes pseudotipados (rAAV) contendo uma razão de 1:1 de proteínas capsidas AAV1 e AAV2 13,14 foram utilizados para os experimentos neste artigo. Com este vetor, a expressão do sensor máximo é tipicamente atingida de 4 a 5 dias após a infecção e permanece estável por pelo menos duas semanas. Usamos com sucesso Grx1-roGFP2 em neurônios hipocampais e corticais primários de ratos e ratos.
Neste artigo, a expressão mediada por rAAV de Grx1-roGFP2 com metas de mitocôndrias em neurônios hipocampais e corticais de ratos primários é usada para avaliar o estado de glutationa mitocondrial basal e sua perturbação aguda. Um protocolo é fornecido para imagens ao vivo confocal com instruções detalhadas sobre como (i) otimizar as configurações do microscópio confocal de varredura a laser, (ii) executar um experimento de imagem ao vivo e (iii) analisar dados com FIJI.
Todos os experimentos em animais se conformaram com as diretrizes nacionais e institucionais, incluindo a Diretiva do Conselho 2010/63/UE do Parlamento Europeu, e tiveram aprovação ética plena do Home Office (Escritório de Bem-Estar Animal da Universidade de Heidelberg e Regierungspraesidium Karlsruhe, licenças T14/21 e T13/21). Os neurônios hipocampais primários e corticais foram preparados a partir de filhotes de camundongos recém-nascidos ou ratos de acordo com os procedimentos padrão e foram mantidos por 12-14 dias como descrito anteriormente13.
1. Preparação de soluções
Componente | MW | Concentração (M) | Quantidade (g) | Volume (mL) |
NaCl | 58.44 | 5 | 14.61 | 50 |
Kcl | 74.55 | 3 | 1.12 | 5 |
MgCl2· 6H2O | 203.3 | 1.9 | 2 | 5 |
CaCl2·2H2O | 147.01 | 1 | 1.47 | 10 |
Glicina | 75.07 | 0.1 | 0.375 | 50 |
Sacarose | 342.3 | 1.5 | 25.67 | 50 |
Piruvato de sódio | 110.04 | 0.1 | 0.55 | 50 |
HEPES | 238.3 | 1 | 11.9 | 50 |
Glicose | 180.15 | 2.5 | 45 | 100 |
Tabela 1: Soluções de estoque para tampão de imagem.
Componente | Solução de estoque (M) | Concentração final (mM) | Volume (mL) |
NaCl | 5 | 114 | 2.3 |
Kcl | 3 | 5.29 | 0.176 |
MgCl2 | 1.9 | 1 | 0.053 |
CaCl2 | 1 | 2 | 0.2 |
Glicina | 0.1 | 0.005 | 0.005 |
Sacarose | 1.5 | 52 | 3.5 |
Piruvato de sódio | 0.1 | 0.5 | 0.5 |
HEPES | 1 | 10 | 1 |
Glicose | 2.5 | 5 | 0.2 |
Tabela 2: Composição do tampão de imagem. Os volumes indicados são utilizados para a preparação de 100 mL de tampão de imagem.
2. Carregamento de células com TMRE
NOTA: Neste protocolo, o TMRE é usado no modo não-saciar15 a uma concentração final de 20 nM. Em geral, deve ser utilizada a menor concentração possível de TMRE que ainda forneça intensidade de sinal suficiente no microscópio de escolha. Devido à evaporação desigual, o volume de médios em diferentes poços pode diferir em culturas primárias de longo prazo. Para garantir uma concentração de TMRE consistente em todos os poços, não adicione TMRE diretamente aos poços. Em vez disso, substitua o meio em cada poço com a mesma quantidade de meio contendo TMRE. O protocolo abaixo é projetado para neurônios primários em placas de 24 poços contendo ~1 mL de médio por poço.
3. Otimização das configurações do microscópio confocal de digitalização
NOTA: Esta etapa visa encontrar o melhor compromisso entre a qualidade da imagem e a viabilidade celular durante a imagem ao vivo. Esta seção descreve a otimização das configurações para imagens roGFP. Se for realizada uma imagem multiparamétrica, uma otimização semelhante, incluindo a verificação de uma linha de base estável sem sinais de branqueamento ou fototoxicidade, precisa ser realizada para os indicadores adicionais.
4. Avaliação do estado basal do redox
5. Imagem ao vivo de tratamentos agudos
NOTA: O protocolo abaixo descreve a imagem da resposta mitocondrial redox ao tratamento NMDA. Os intervalos de imagem e a duração do experimento podem precisar ser ajustados para outros tratamentos.
6. Análise de dados
Quantificação das diferenças no estado vermelho mitocondrial de estado estável após a retirada do fator de crescimento
Para demonstrar a quantificação das diferenças de estado estável no estado redox mitocondrial, os neurônios primários cultivados no meio padrão foram comparados aos neurônios cultivados sem fatores de crescimento por 48 horas antes da imagem. A retirada do fator de crescimento resulta em morte celular neuronal apoptóltica após 72 h16. As células...
Medições quantitativas e dinâmicas do estado mitocondrial redox fornecem informações importantes sobre fisiologia mitocondrial e celular. Várias sondas químicas fluorogênicas estão disponíveis que detectam espécies reativas de oxigênio, "estresse redox" ou "estresse oxidativo". No entanto, os últimos termos não são bem definidos e muitas vezes carecem de especificidade9,17,18. Em comparação com os corantes quím...
Os autores declaram que não têm conflito de interesses.
Este trabalho foi apoiado pela Deutsche Forschungsgemeinschaft (BA 3679/5-1; PARA 2289: BA 3679/4-2). A.K. é apoiada por uma bolsa ERASMUS+. Agradecemos a Iris Bünzli-Ehret, Rita Rosner e Andrea Schlicksupp pela preparação dos neurônios primários. Agradecemos ao Dr. Tobias Dick por fornecer pLPCX-mito-Grx1-roGFP2. Experimentos mostrados na Figura 4 foram realizados no Nikon Imaging Center, Universidade de Heidelberg. A Figura 2 foi preparada com BioRender.com.
Name | Company | Catalog Number | Comments |
reagents | |||
Calcium chloride (CaCl2·2H2O) | Sigma-Aldrich | C3306 | |
Diamide (DA) | Sigma-Aldrich | D3648 | |
Dithiothreitol (DTT) | Carl Roth GmbH | 6908.1 | |
Glucose (2.5 M stock solution) | Sigma-Aldrich | G8769 | |
Glucose | Sigma-Aldrich | G7528 | |
Glycine | neoFroxx GmbH | LC-4522.2 | |
HEPES (1 M stock solution) | Sigma-Aldrich | 15630-080 | |
HEPES | Sigma-Aldrich | H4034 | |
Magnesium chloride (MgCl2·6H2O) | Sigma-Aldrich | 442611-M | |
N-methyl-D-aspartate (NMDA) | Sigma-Aldrich | M3262 | |
Potassium chloride (KCl) | Sigma-Aldrich | P3911 | |
Sodium chloride (NaCl) | neoFroxx GmbH | LC-5932.1 | |
Sodium pyruvate (0.1 M stock solution) | Sigma-Aldrich | S8636 | |
Sodium pyruvate | Sigma-Aldrich | P8574 | |
Sucrose | Carl Roth GmbH | 4621.1 | |
Tetramethylrhodamine ethyl ester perchlorate (TMRE) | Sigma-Aldrich | 87917 | |
equipment | |||
imaging chamber | Life Imaging Services (Basel, Switzerland) | 10920 | Ludin Chamber Type 3 for Ø12mm coverslips |
laser scanning confocal microscope, microscope | Leica | DMI6000 | |
laser scanning confocal microscope, scanning unit | Leica | SP8 | |
peristaltic pump | VWR | PP1080 181-4001 | |
spinning disc confocal microscope, camera | Hamamatsu | C9100-02 EMCCD | |
spinning disc confocal microscope, incubationsystem | TokaiHit | INU-ZILCF-F1 | |
spinning disc confocal microscope, microscope | Nikon | Ti microscope | |
spinning disc confocal microscope, scanning unit | Yokagawa | CSU-X1 | |
software | |||
FIJI | https://fiji.sc | ||
StackReg plugin | https://github.com/fiji-BIG/StackReg/blob/master/src/main/java/StackReg_.java | ||
TurboReg plugin | https://github.com/fiji-BIG/TurboReg/blob/master/src/main/java/TurboReg_.java |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados