Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Мы демонстрируем, как использовать новый инструмент для анализа отслеживания наночастиц для оценки распределения по размеру и общей концентрации частиц внеклеточных везикул, выделенных из перигонадной жировой ткани мыши и плазмы человека.
Физиологические и патофизиологические роли внеклеточных везикул (EV) становятся все более признанными, что делает область EV быстро развивающейся областью исследований. Существует множество различных методов изоляции электромобилей, каждый из которых имеет свои преимущества и недостатки, которые влияют на выход и чистоту электромобилей. Таким образом, характеристика подготовки EV, изолированной от заданного источника выбранным методом, важна для интерпретации последующих результатов и сравнения результатов в разных лабораториях. Существуют различные методы определения размера и количества EV, которые могут быть изменены болезненными состояниями или в ответ на внешние условия. Анализ отслеживания наночастиц (NTA) является одной из выдающихся технологий, используемых для высокопроизводительного анализа отдельных электромобилей. Здесь мы представляем подробный протокол количественной оценки и определения размера EV, выделенных из перигонадной жировой ткани мыши и плазмы человека, с использованием прорывной технологии для NTA, представляющей основные достижения в этой области. Результаты показывают, что этот метод может предоставлять воспроизводимые и достоверные данные об общей концентрации частиц и распределении по размеру для электромобилей, выделенных из разных источников с использованием различных методов, что подтверждается просвечиваюрной электронной микроскопией. Адаптация этого инструмента для NTA позволит рассмотреть необходимость стандартизации методов NTA для повышения строгости и воспроизводимости в исследованиях EV.
Внеклеточные везикулы (EV) представляют собой небольшие (0,03-2 мкм) связанные с мембраной везикулы, секретируемые почти всеми типами клеток1. Их часто называют «экзосомами», «микровезикулами» или «апоптотическими телами» в зависимости от их механизма высвобождения и размера2. Хотя первоначально считалось, что электромобили были просто средством устранения отходов из клетки для поддержания гомеостаза3,теперь мы знаем, что они также могут участвовать в межклеточной коммуникации посредством переноса молекулярного материала, включая ДНК, РНК (мРНК, микроРНК), липиды и белки4,5, и что они являются важными регуляторами нормальной физиологии, а также патологических процессов1, 5,6,7,8.
Существует множество различных методов выделения и количественной оценки электромобилей, которые были описаны в других разделах9,10,11,12. Используемый протокол изоляции, а также источник электромобилей могут сильно повлиять на выход и чистоту электромобилей. Даже дифференциальное центрифугирование, долгое время считавшийся подходом «золотого стандарта» для выделения экзосом, может подвергаться существенной изменчивости, впоследствии влияющей на популяцию электромобилей, полученную и последующий анализ13. Таким образом, различные методологии изоляции и количественной оценки электромобилей затрудняют сравнение, воспроизведение и интерпретацию результатов экспериментов, о которых сообщается в литературе14. Кроме того, высвобождение EV может регулироваться клеточными условиями или различными внешними факторами. Было высказано предположение, что EV играют роль в поддержании клеточного гомеостаза, защищая клетки от внутриклеточного стресса15,поскольку несколько исследований показали, что клеточный стресс стимулирует секрецию EV. Например, сообщалось об увеличении высвобождения EV после клеточного воздействия гипоксии, эндоплазматического стресса риткулума, окислительного стресса, механического стресса, экстракта сигаретного дыма и загрязнения воздуха твердыми частицами16,17,18,19,20,21,22. Также было показано, что релиз EV модифицируется in vivo; мыши, подвергаемые диете с высоким содержанием жиров или голодания в течение шестнадцати часов, высвобождали больше адипоцитарных EV23. Чтобы выяснить, изменяет ли конкретное лечение или состояние высвобождение EV, количество EV должно быть точно определено. Оценка распределения EV по размерам может также указывать на преобладающее субклеточное происхождение EV (например, слияние поздних эндосом/мультивезикулярных тел с плазматической мембраной против почкоделения плазматической мембраны)24. Таким образом, существует потребность в надежных методах для точного измерения общей концентрации и распределения по размерам изучаемого ev prep.
Быстрым и высокочувствительным методом визуализации и характеристики электромобилей в растворе является анализ отслеживания наночастиц (NTA). Подробное объяснение принципов применения данного метода и сравнение с альтернативными методами оценки размера и концентрации ЭВ были описаныранее 25,26,27,28. Вкратце, во время измерения NTA электромобили визуализируются светом, рассеянным при их облучении лазерным лучом. Рассеянный свет фокусируется микроскопом на камере, которая записывает движение частиц. Программное обеспечение NTA отслеживает случайное тепловое движение каждой частицы, известное как броуновское движение, чтобы определить коэффициент диффузии, который используется для расчета размера каждой частицы с использованием уравнения Стокса-Эйнштейна. NTA был впервые применен для измерения EV в биологическом образце в 2011году25. До недавнего времени существовало только две основные компании, предлагающие коммерческие инструменты NTA29 до появления ViewSizer 3000 (далее именуемого инструментом отслеживания частиц), который использует комбинацию новых аппаратных и программных решений для преодоления значительных ограничений других методов NTA.
Инструмент отслеживания частиц характеризует наночастицы в жидких образцах путем анализа их броуновского движения и характеризует более крупные частицы микронный размером, анализируя гравитационное оседание. Уникальная оптическая система этого прибора, которая включает в себя мультиспектральное освещение с тремя лазерными источниками света (при 450 нм, 520 нм и 635 нм), позволяет исследователям анализировать широкий диапазон размеров частиц (например, экзосомы, микровезикулы) одновременно. Схема установки прибора показана на рисунке 1.
Здесь мы демонстрируем, как выполнять измерения размера частиц и концентрации изолированных электромобилей мышей и человека с помощью нового инструмента NTA.
Рисунок 1:Оптическая система прибора слежения за частицами. Прибор NTA освещает частицы с помощью трех лазеров со следующими длинами волн: 450 нм, 520 нм, 635 нм. Видеозапись рассеянного света от отдельных частиц обнаруживается и отслеживается цифровой видеокамерой, ориентированной на 90° от кюветы. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Вся работа с этими образцами проводилась в соответствии с руководящими принципами Институционального комитета по уходу за животными и их использованию и Совета по институциональному обзору. Схематический обзор метода NTA показан на рисунке 2.
Рисунок 2:Обзор метода NTA с использованием прибора слежения за частицами. Образец подготавливается и вставляется в инструмент. Программное обеспечение NTA открывается, параметры записи настраиваются, и образец фокусируется. Затем данные записываются, обрабатываются и отображаются. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
1. Изоляция внеклеточных везикул
ПРИМЕЧАНИЕ: ЭV перигонадальной жировой ткани мыши были выделены, какописано ранее 23. Плазменные EV были выделены из 1 мл плазмы человека с использованием следующего протокола:
2. Очистка изолированных электромобилей
3. Элюляция образца
4. Пробоподготовка к анализу отслеживания наночастиц
Рисунок 3:Правильная ориентация вставки внутри кварцевой кюветы. "Выемка" вкладыша должна быть видна с передней части кюветы. Он должен быть вставлен в прибор, обращенный к камере. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Рисунок 4:Репрезентативный вид в реальном времени размывая в пределах надлежащего диапазона концентрации заготовки. Разбавляйте препараты EV в фильтрованном (0,02 мкм или 3 кДа, предпочтительно) PBS. Хорошая заготовка будет отображать ~ 1-10 частиц на экране в режиме реального времени, давая концентрацию в диапазоне 105-106. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
5. Процедура запуска прибора слежения за частицами
Рисунок 5:Правильная ориентация кюветы в приборе слежения за частицами. Лицевая часть кюветы (с видимой «выемкой» вставки) должна быть обращена к камере. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Рисунок 6:Репрезентативные виды потокового потока, показывающие фокус частиц. (A) Пример просмотра в реальном времени частиц, не намечающихся в фокусе. Частицы имеют светящийся гало или кажутся размытыми. Отрегулируйте фокус. (B) Пример просмотра частиц в правильном фокусе в реальном времени. Мельчайшие частицы находятся в фокусе. Начните запись. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
Рисунок 7:Репрезентативные представления потоков в реальном времени, изображающие различные разбавления частиц. (A) Пример просмотра в реальном времени слишком концентрированного образца. Запись слишком концентрированного образца даст неточные результаты. (B)Пример просмотра в реальном времени правильно разбавленного образца. На экране видно 60-100 частиц, и запись приводит к сырой концентрации 5 x 106- 2 x 108 частиц / мл. (C) Пример просмотра в реальном времени слишком разбавленного образца. Если образец настолько разбавлен, то не будет отслежено достаточное количество частиц, что уменьшит размер выборки и, следовательно, результаты будут статистически недействительными. В этом случае рекомендуется увеличить количество записанных видео. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
6. Сбор видеоданных
7. Обработка полученных данных
8. Отображение и интерпретация результатов
9. Чистка кювет
Перед этой демонстрацией калибровка прибора была сначала протестирована для обеспечения достоверности полученных данных путем измерения распределения по размерам стандартов полистирольных шариков. Мы протестировали распределение размеров бусин 100 нм и 400 нм с использованием параме...
Здесь мы демонстрируем протокол для NTA электромобилей для измерения распределения по размерам широкого диапазона размеров частиц одновременно и измерения общей концентрации EV в полидисперсном образце. В этом исследовании перигонадная жировая ткань мыши и плазма человека были исполь...
Все авторы заявили, что конфликта интересов нет.
Эта работа была поддержана Национальными институтами здравоохранения (ES030973-01A1, R01ES025225, R01DK066525, P30DK026687, P30DK063608). Мы благодарим Джеффри Бодикомба, доктора философии HORIBA Instruments Incorporated, за его помощь в калибровке прибора.
Name | Company | Catalog Number | Comments |
1X dPBS | VWR | 02-0119-1000 | To dilute samples |
100 nm bead standard | Thermo Scientific | 3100A | To test ViewSizer 3000 calibration |
400 nm bead standard | Thermo Scientific | 3400A | To test ViewSizer 3000 calibration |
Centrifugal Filter Unit | Amicon | UFC901024 | To filter PBS diluent |
Collection tubes, 2 mL | Qiagen | 19201 | For isolation of human plasma extracellular vesicles |
Compressed air duster | DustOff | DPSJB-12 | To clean cuvettes |
Cuvette insert | HORIBA Scientific | - | Provided with purchase of ViewSizer 3000 |
Cuvette jig | HORIBA Scientific | - | To align magnetic stir bar while placing inserts inside cuvette; Provided with purchase of ViewSizer 3000 |
De-ionized water | VWR | 02-0201-1000 | To clean cuvettes |
Desktop computer with monitor, keyboard, mouse, and all necessary cables | Dell | - | Provided with purchase of ViewSizer 3000 |
Ethanol (70-100%) | Millipore Sigma | - | To clean cuvettes |
ExoQuick ULTRA | System Biosciences | EQULTRA-20A-1 | For isolation of human plasma extracellular vesicles |
Glass scintillation vials with lids | Thermo Scientific | B780020 | To clean cuvettes |
"Hook" tool | Excelta | - | Provided with purchase of ViewSizer 3000 |
Lint-free microfiber cloth | Texwipe | TX629 | To clean cuvettes and cover work surface |
Microcentrifuge tubes, 2 mL | Eppendorf | 22363344 | For isolation of human plasma extracellular vesicles |
Stir bar | Sp Scienceware | F37119-0005 | |
Suprasil Quartz cuvette with cap | Agilent Technologies | AG1000-0544 | Initially provided with purchase of ViewSizer 3000 |
ViewSizer 3000 | HORIBA Scientific | - | Nanoparticle tracking instrument |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены