Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Мы показываем формирование и размерную характеристику микро- и нанопластиков (МП и НП соответственно) с использованием поэтапного процесса механического фрезерования, шлифования и визуализационного анализа.
Микропластики (МП) и нанопластики (НП), рассеянные в сельскохозяйственных экосистемах, могут представлять серьезную угрозу для биоты в почве и близлежащих водных путях. Кроме того, химические вещества, такие как пестициды, адсорбированные НП, могут нанести вред почвенным организмам и потенциально попасть в пищевую цепь. В этом контексте используемые в сельском хозяйстве пластмассы, такие как пластиковые мульчирующие пленки, вносят значительный вклад в загрязнение пластиком в сельскохозяйственных экосистемах. Однако в большинстве фундаментальных исследований судьбы и экотоксичности используются идеализированные и плохо репрезентативные материалы МП, такие как полистирольные микросферы.
Поэтому, как описано здесь, мы разработали многоступенчатую процедуру лабораторного масштаба для механического формирования репрезентативных депутатов и НП для таких исследований. Пластичный материал получали из коммерчески доступных пластиковых мульчирующих пленок полибутирата адипат-ко-терефталата (ПБАТ), которые были эмбритированы либо путем криогенной обработки (CRYO), либо выветривания окружающей среды (W), а также из необработанных гранул PBAT. Затем пластиковые материалы обрабатывались механическим фрезерованием с образованием МП размером 46-840 мкм, имитируя истирание пластиковых фрагментов ветром и механическим оборудованием. Затем депутаты были разделены на несколько фракций размера, чтобы обеспечить дальнейший анализ. Наконец, фракция сита 106 мкм подвергалась мокрому измельчению для получения NP 20-900 нм, процесс, который имитирует медленный процесс уменьшения размера для наземных МП. Размеры и форма для депутатов были определены путем анализа изображений стереомикрографов, а динамическое рассеяние света (DLS) использовалось для оценки размера частиц для НП. Депутаты и НП, сформированные в результате этого процесса, обладали неправильными формами, что соответствует геометрическим свойствам депутатов, извлеченных из сельскохозяйственных полей. В целом, этот метод уменьшения размера оказался эффективным для формирования МП и НП, состоящих из биоразлагаемых пластмасс, таких как полибутиленадипат-котерефталат (ПБАТ), представляющих собой мульчирующие материалы, используемые для сельскохозяйственного специального растениеводства.
В последние десятилетия быстро растущее мировое производство пластмасс и неправильная утилизация и отсутствие переработки пластиковых отходов привели к загрязнению окружающей среды, которое повлияло на морские и наземные экосистемы 1,2,3. Пластиковые материалы необходимы для современного сельского хозяйства, особенно для выращивания овощей, мелких фруктов и других специальных культур. Их использование в качестве мульчирующих пленок, высоких и низких туннельных покрытий, капельной ленты и других применений направлено на повышение урожайности и качества сельскохозяйственных кул....
1. Переработка МП из пластиковых гранул путем криогенной предварительной обработки и измельчения
ПРИМЕЧАНИЕ: Данная методология основана на процедуре, описанной в другом месте, с использованием пленки PBAT, состоящей из того же материала, который использовался для данного представленного исследования29.
Для проверки метода экспериментальной процедуры и анализа МП и НП были сформированы из гранул и пленочных материалов и сопоставлены по размеру и форме с использованием микроскопических изображений. Способ, описанный на фиг.1, эффективно формировал МП и НП из биоразлага.......
Этот метод описывает эффективный процесс, первоначально описанный в предыдущей публикации29, для подготовки МНП, полученных из гранул и мульчирующих пленок, для экологических исследований. Процесс уменьшения размера включал криогенное охлаждение (только для пленки), сухо?.......
Авторам нечего раскрывать.
Это исследование финансировалось Сельскохозяйственным колледжем Герберта, Департаментом биосистемной инженерии и почв и Научным альянсом в Университете Теннесси, Ноксвилл. Кроме того, авторы с благодарностью отмечают финансовую поддержку, предоставленную в рамках гранта Министерства сельского хозяйства США 2020-67019-31167 для этого исследования. Первоначальное сырье для подготовки МНП биоразлагаемой мульчированной пленки на основе ПБАТ было любезно предоставлено компанией BioBag Americas, Inc. (Dunevin, FL, США) и гранулами PBAT компанией Mobius, LLC (Lenoir City, TN).
....Name | Company | Catalog Number | Comments |
Aluminum dish, 150 mL | Fisher Scientific, Waltham, MA, USA | 08-732-103 | Drying of collected NPs |
Aluminum dish, 500 mL | VWR International, Radnor, PA, USA | 25433-018 | Collecting NPs after wet-grinding |
Centrifuge | Fisher Scientific, Waltham, MA, USA | Centrific 228 | Container for centrifugation |
Delivery tube, #20, 840 µm | Thomas Scientific, Swedesboro, NJ, USA | 3383M30 | Sieving of the first fraction during milling |
Delivery tube, #60, 250 µm | Thomas Scientific, Swedesboro, NJ, USA | 3383M45 | Sieving of the second fraction (3x) during milling |
Thermomixer, 5350 Mixer | Eppendorf North America, Enfield, CT, USA | 05-400-200 | Analysis of sieving experiments |
FT-IR Spectrum Two, spectrometer with attenuated total reflectance (ATR) | Perkin Elmer, Waltham, MA, USA | L1050228 | Measuring FTIR spectra |
Glass beaker, 1000 mL | DWK Life Sciences, Milville, NJ, USA | 02-555-113 | Stirring of MPs-water slurry before grinding |
Glass front plate | Thomas Scientific, Swedesboro, NJ, USA | 3383N55 | Front cover plaste for Wiley Mini Mill |
Glass jar, 50 mL | Uline, Pleasant Prairie, WI, USA | S-15846P | Collective MPs after milling |
Glove Box, neoprene | Bel-Art-SP Scienceware, Wayne, NJ, USA | BEL-H500290000 | 22-Inch, Size 10 |
Zetasizer Nano ZS 90 size analyzer | Malvern Panalytical, Worcestershire, UK | Zetasizer Nano ZS | Measuring nanoplastics dispersed in DI-water |
Microscope camera | Nikon, Tokyo, 108-6290, Japan | Nikon Digital Sight 10 | Combined with Olympus microscope to receive digital images |
Microscope | Olympus, Shinjuku, Tokyo, Japan | Model SZ 61 | Imaging of MPs |
Nitrogen jar, low form dewar flasks | Cole-Palmer, Vernon Hills, IL, USA | UX-03771-23 | Storage of liquid nitrogen during cryogenic cooling |
Accurate Blend 200, 12-speed blender | Oster, Boca Raton, FL, USA | 6684 | Initiating the size reduction of cryogenically treated plastic film |
PBAT film, - BioAgri™ (Mater-Bi®) | BioBag Americas, Inc, Dunedin, FL, USA | 0.7 mm thick | Feedstock to form MPs and NPs, agricultural mulch film |
PBAT pellets | Mobius, LLC, Lenoir City, TN, USA | Diameter 3 mm | Feedstock to form microplastics (MPs) and nanoplastics (NPs) trough milling and grinding |
Plastic centrifuge tubes, 50 mL | Fisher Scientific, Waltham, MA, USA | 06-443-18 | Centrifugation of slurry after wet-grinding |
Plastic jar, 1000 mL, pre-cleaned, straight sided | Fisher Scientific, Waltham, MA, USA | 05-719-733 | Collection of NPs during and after wet grinding |
Polygon stir bars, diameterø=8 mm, length=50.8 mm | Fisher Scientific, Waltham, MA, USA | 14-512-127 | Stirring of MPs slurry prior to wet-grinding |
Scissors, titanium bonded | Westcott, Shelton, CT, USA | 13901 | Cutting of initial PBAT film feedstocks |
Square glass cell with square aperture and cap, 12 mm O.D. | Malvern Panalytical, Worcestershire, UK | PCS1115 | Measuring of NPs particle size |
Stainless steel bottom, 3 inch, pan | Hogentogler & Co. Inc, Columbia, MD, USA | 8401 | For sieving after Wiley-milling |
Stainless steel sieve, 3 inch, No. 140 (106 µm) | Hogentogler & Co. Inc, Columbia, MD, USA | 1308 | For sieving after Wiley-milling |
Stainless steel sieve, 3 inch, No. 20 (850 µm) | Hogentogler & Co. Inc, Columbia, MD, USA | 1296 | Sieving of MPs after Wiley-milling |
Stainless steel sieve, 3 inch, No. 325 (45 µm) | Hogentogler & Co. Inc, Columbia, MD, USA | 1313 | Sieving of MPs after Wiley-milling |
Stainless steel sieve, 3 inch, No. 60 (250 µm) | Hogentogler & Co. Inc, Columbia, MD, USA | 1303 | Sieving of MPs after Wiley-milling |
Stainless steel top cover, 3 inch | Hogentogler & Co. Inc, Columbia, MD, USA | 8406 | Sieving of MPs after Wiley-milling |
Stainless steel tweezers | Global Industrial, Port Washington, NY, USA | T9FB2264892 | Transferring of frozen film particles from jar into blender |
Vacuum oven, model 281A | Fisher Scientific, Waltham, MA, USA | 13-262-50 | Vacuum oven to dry NPs after wet-grinding |
Friction grinding machine, Supermass Colloider | Masuko Sangyo, Tokyo, Japan | MKCA6-2J | Grinding machine to form NPs from MPs |
Wet-grinding stone, grit size: 297 μm -420 μm | Masuko Sangyo, Tokyo, Japan | MKE6-46DD | Grinding stone to form NPs from MPs |
Wiley Mini Mill, rotary cutting mill | Thomas Scientific, Swedesboro, NJ, USA | NC1346618 | Size reduction of pellets and film into MPs and NPs |
Software | |||
FTIR-Spectroscopy software | Perkin Elmer, Waltham, MA, USA | Spectrum 10 | Collection of spectra from the initial plastic, MPs and NPs |
Image J, image processing program | National Institutes of Health, Bethesda, MD, USA | Version 1.53n | Analysis of digital images received from microscopy |
Microscope software, ds-fi1 software | Malvern Panalytical , Malvern, UK | Firmware DS-U1 Ver3.10 | Recording of digital images |
Microsoft, Windows, Excel 365, spreadsheet software | Microsoft, Redmond, WA, USA | Office 365 | Calculating the average particle size and creating FTIR spectra images |
JMP software, statistical software | SAS Institute Inc., Cary, NC, 1989-2021 | Version 15 | Statistical analysis of particle size and perform best fit of data set |
Unscrambler software | Camo Analytics, Oslo, Norway | Version 9.2 | Normalizing and converting FTIR spectra into .csv fromat |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеСмотреть дополнительные статьи
This article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены