Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Протокол позволяет измерять деформацию микроструктуры кости во всем проксимальном отделе бедренной кости человека и ее прочность, сочетая микрокомпьютерную томографию большого объема, компрессионную стадию, изготовленную по индивидуальному заказу, и передовые инструменты обработки изображений.
Визуализация микроструктуры кости при прогрессивно возрастающих нагрузках позволяет наблюдать за поведением микроструктурного разрушения кости. В данной работе мы описываем протокол получения последовательности трехмерных микроструктурных изображений всего проксимального отдела бедренной кости при прогрессивно нарастающей деформации, вызывающей клинически значимые переломы шейки бедренной кости. Протокол продемонстрирован на примере четырех бедренных костей доноров женского пола в возрасте 66-80 лет с нижней границей минеральной плотности костной ткани в популяции (диапазон Т-критерия = от −2,09 до −4,75). Радиопрозрачный компрессионный столик был разработан для нагружения образцов, воспроизводящих стойку на одной ноге, с одновременным регистрированием приложенной нагрузки при микрокомпьютерной томографии (микро-КТ). Поле зрения составляло 146 мм в ширину и 132 мм в высоту, а размер изотропного пикселя — 0,03 мм. Приращение силы было основано на конечно-элементных прогнозах нагрузки на разрушение. Стадия сжатия использовалась для приложения смещения к образцу и введения заданного приращения усилия. Субкапитальные переломы из-за вскрытия и сдвига шейки бедренной кости происходили после четырех-пяти приращений нагрузки. Микро-КТ-изображения и измерения силы реакции были обработаны для изучения деформации кости и способности поглощать энергию. Нестабильность коры головного мозга проявилась на ранних этапах нагрузки. Субхондральная кость головки бедренной кости демонстрировала большие деформации, достигавшие 16% до перелома, и прогрессирующее увеличение опорной способности вплоть до перелома. Энергия деформации линейно возрастала со смещением вплоть до разрушения, в то время как жесткость снижалась до околонулевых значений непосредственно перед разрушением. Три четверти энергии разрушения было поглощено образцом во время заключительного 25-процентного приращения силы. В заключение, разработанный протокол показал замечательную способность поглощать энергию, или устойчивость к повреждениям, а также синергетическое взаимодействие между кортикальной и трабекулярной костью в пожилом возрасте донора.
Переломы шейки бедренной кости являются серьезным бременем для стареющего населения. Микрокомпьютерная томография (микро-КТ) и сопутствующее механическое исследование позволяют наблюдать микроструктуру кости и изучать ее связь с прочностью кости, ее возрастными изменениями и смещениями под нагрузкой 1,2. Однако до недавнего времени микро-КТ исследований костей под нагрузкой ограничивались иссеченными костными ядрами3, мелкими животными4 и позвоночником человека5. Настоящий протокол позволяет количественно оценить смещение микроструктуры всего проксимального отдела бедренной кости человека под нагрузкой и после перелома.
Было проведено несколько исследований по изучению недостаточности бедренной кости человека, и иногда они приходили к противоположным выводам. Например, считается, что возрастное истончение кортикальных и трабекулярных структур определяет возрастную предрасположенность к переломам, вызывая эластическую нестабильность кости6,7, что явно контрастирует с высоким коэффициентом определения деформации коры и прогнозов прочности бедренной кости при условии отсутствия эластической нестабильности (R2 = 0,80-0,97)8,9. Тем не менее, такие исследования систематически недооценивали прочность бедренной кости (на 21%-29%), что ставит под сомнение хрупкие и квазихрупкие костные реакции, реализованные в моделях 8,10. Одно из возможных объяснений этих, казалось бы, противоречащих друг другу результатов может заключаться в различном поведении при переломе целых костей по сравнению с изолированными костными ядрами. Таким образом, наблюдение за реакцией на деформацию и перелом микроструктуры кости во всем проксимальном отделе бедренной кости может углубить знания о механике перелома бедра и связанных с ней приложениях.
Существующие методы визуализации целых костей человека с микрометрическим разрешением ограничены. Размер портала и детектора должен обеспечивать подходящий рабочий объем для размещения проксимального отдела бедренной кости человека (примерно 13 см x 10 см, ширина x длина) и, возможно, размер пикселя порядка 0,02-0,03 мм, чтобы обеспечить возможность захвата соответствующих микроархитектурных элементов11. В настоящее время этим спецификациям могут соответствовать некоторые синхротронныеустановки1 и некоторые коммерчески доступные микрокомпьютерные томографыбольшого объема 12,13. Компрессионная ступень должна быть радиопрозрачной, чтобы свести к минимуму ослабление рентгеновского излучения и создать силу, достаточную для того, чтобы вызвать перелом бедренной кости человека (например, от 0,9 кН до 14,3 кН для пожилых белых женщин)14. Такое большое изменение нагрузки на трещину усложняет планирование количества этапов нагружения до разрушения, общего времени эксперимента и соответствующего объема получаемых данных. Для решения этой проблемы нагрузка и локализация перелома могут быть оценены с помощью конечно-элементного моделирования с использованием распределения плотности костной ткани образца по изображениям клинической компьютерной томографии (КТ) 1,2. Наконец, после эксперимента большой объем полученных данных необходимо обработать для изучения механизмов отказа и способности к диссипации энергии во всей бедренной кости человека.
Здесь мы описываем протокол получения последовательности трехмерных микроструктурных изображений всего проксимального отдела бедренной кости при прогрессивно нарастающей деформации, которая вызывает клинически значимые переломы шейки бедренной кости2. Протокол включает в себя планирование ступенчатого приращения сжатия образца, нагружение с помощью специальной радиопрозрачной компрессионной ступени, визуализацию с помощью микрокомпьютерного томографа большого объема и обработку изображений и профилей нагрузки.
Протокол был разработан и протестирован на 12 образцах бедренной кости, полученных в рамках программы донорства тела. Образцы получали свежими и хранили при температуре −20 °C в Лаборатории биомеханики и имплантатов Университета Флиндерса (Тонсли, Южная Австралия, Австралия). Влажность костей поддерживалась на протяжении всего эксперимента. Донорами выступили женщины кавказской расы (66-80 лет). Этическое разрешение было получено от Комитета по этике социальных и поведенческих исследований (SBREC) Университета Флиндерса (Project # 6380).
1. Планирование шага нагрузки для конкретного образца
Рисунок 1: Расчет нагрузки на разрушение. Карта деформации конечных элементов, уравнения, используемые для преобразования номинальной силы в нагрузку на разрушение (слева), и схема нагружения, отображающая бедренную кость (в центре справа), дистальную алюминиевую чашку (вверху справа) и полиэтиленовую напорную раструбку (внизу справа). Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
2. Подготовка образца бедренной кости в сборе (Рисунок 2)
Рисунок 2: Юстировочная установка. Фронтальная (слева) и боковая (справа) фотография юстировочного стенда, на которой изображены (A) рама, (B) алюминиевый стаканчик для заливки, (C) синтетическая модель бедренной кости и (D) напорное гнездо сферической формы. Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
3. Сборка ступени сжатия
ПРИМЕЧАНИЕ: Внешние размеры ступени сжатия составляют 245 мм в диаметре, 576 мм в высоту и вес 14 кг без учета образца. Ступень сжатия состоит из двух основных частей: камеры сжатия и привода, которые собраны следующим образом:
Рисунок 3: Изготовленная по индивидуальному заказу радиопрозрачная ступень сжатия. Фотография (слева) и модель (справа) компрессионной ступени. (A) Камера сжатия, представляющая собой алюминиевый цилиндр толщиной 3 мм, закрытый снизу; (B) привод в сборе с верхней конструкцией; (C) винтовой домкратный механизм; (D) таблица x-y с низким коэффициентом трения; и (E) шестиосевой тензодатчик отображаются и указываются на модели. Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
4. Постановка эксперимента
5. Механические испытания с сопутствующей микроструктурной визуализацией
6. Расчет поля перемещений и деформаций
7. Анализ
На изображениях видна вся проксимальная часть бедренной кости, прижимная впадина, зубной цемент, алюминиевая чашка и оберточная ткань. Микроархитектура кости прогрессивно деформируется по мере увеличения нагрузки до и после перелома (рис. 4).
Настоящий протокол позволяет изучать микромеханику переломов шейки бедра в трех измерениях ex vivo. Радиопрозрачная (алюминиевая) компрессионная ступень, способная оказывать прогрессирующую деформацию на проксимальную половину бедренной кости человека и измерять силу реакции, бы?...
Все авторы заявляют об отсутствии конфликта интересов.
Финансирование со стороны Австралийского исследовательского совета (FT180100338; IC190100020) с благодарностью.
Name | Company | Catalog Number | Comments |
Absorbent tissue | N/A | Maintain the bone moisture throughout the experiment | |
Alignment rig | Custom-made | Rig for positioning the specimen in the potting cup | |
Aluminium potting cup | Custom-made | Potting cup | |
Bone saw | N/A | Cut the specimen to size | |
Calibration phantom QCT Pro | Mindways Software, Inc., Austin, USA | CT Calibration 13002 | Calibrate grey levels in the images into equivalent bone mineral (ash) density levels |
Clinical Computed-Tmography scanner | General Electric Medical Systems Co., Wisconsin, USA | Optima CT660 | Preliminary imaging for the prediction of the load step to fracture |
Compressive stage | Custom-made | A 10 kg, radiotransparent compressive stage for applying and maintaining throught imaging a prescribed deformation to the specimen. | |
Dental cement | Soesterberg, The Netherlands | Vertex RS | |
Femur specimen | Science Care, Phoenix, USA | ||
Finite-element analysis software | ANSYS Inc., Canonsburg, USA | ANSYS Mechanical APDL | Finite-element software package |
Freezer | N/A | Store specimens at -20 °C | |
Hard Drive | Dell | Disk space: 500 GB per volume | |
Image bnarization and segmentation software | Skyscan-Bruker, Kontich, Belgium | CT analyzer | Image processing software |
Image elastic segmentation | The University of Sheffield | Bone DVC | https://bonedvc.insigneo.org/dvc/ |
Image processing and automation software | The MathWork Inc. | Matlab | Image processing software |
Image registration software | Skyscan-Bruker, Kontich, Belgium | DataViewer | Image processing software |
Image segmentation and FE modelling software | Simpleware, Exeter, UK | Scan IP | Bone egmentation software |
Image stiching script | Australian syncrotron, Clayton, VIC, AU | The script is available at IMBL | |
Image visualization | Kitware, Clifton Park, NY, USA | Paraview | Image visualization |
Image visualization | Australian National University | Dristhi | Image visualization: doi:10.1117/12.935640 |
Imaging and Medical beamline | Australian syncrotron, Clayton, VIC, AU | Large object micro-CT beamline at the Australian Synchrotron | |
Laptop | Dell Inc., USA | ||
Low-friction x-y table | THK Co., Tokyo, Japan | ||
NI signal acquisition software | National Instruments, Austin, TX | NI-DAQmx | |
Phosphate-buffered saline solution | Custom-made | Maintain the bone moisture throughout the experiment | |
Plastic bag | N/A | Maintain the bone moisture throughout the experiment | |
Rail | SKF Inc., Lansdale, PA, USA | ||
Screw-jack mechanism | Benzlers, Örebro, Sweden | Serie BD (warm gear unit) | stroke: 150 mm, maximal load: 10,000 N, gear ratio: 27:1, a displacement per revolution: 0.148 mm |
Single pco.edge sensor, lens coupled scintillator | Australian syncrotron, Clayton, VIC, AU | Detector Ruby FOV: 141 x 119 mm; 2560 x 2160 px; 55 µm/px; 50 fps | |
Six axis load cell | ME-Meßsysteme GmbH, Hennigsdorf, GE | K6D6 | Maximal measurement error: 0.005%; maximal force: 10000 N; maximal torque: 500 Nm |
Strain amplifier | ME-Meßsysteme GmbH, Hennigsdorf, GE | GSV-1A8USB K6D/M16 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены