Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Медицинские паразиты крови во всем мире были автоматически проверены с помощью простых шагов на платформе искусственного интеллекта с минимумом программирования. Проспективная диагностика пленок крови была улучшена за счет использования метода обнаружения и классификации объектов в гибридной модели глубокого обучения. Сотрудничество активного мониторинга и хорошо обученных моделей помогает выявлять очаги передачи трипаносом.
Трипаносомоз является серьезной проблемой общественного здравоохранения в нескольких регионах мира, включая Южную и Юго-Восточную Азию. Выявление очагов, находящихся под активным эпиднадзором, является основополагающей процедурой борьбы с передачей болезни. Микроскопическое исследование является широко используемым методом диагностики. Тем не менее, она в первую очередь зависит от квалифицированного и опытного персонала. Для решения этой проблемы была внедрена программа искусственного интеллекта (ИИ), использующая гибридную технику глубокого обучения нейронных сетей идентификации и классификации объектов на собственной low-code платформе искусственного интеллекта (CiRA CORE). Программа может идентифицировать и классифицировать простейшие виды трипаносом, а именно Trypanosoma cruzi, T. brucei и T. evansi, по микроскопическим изображениям, полученным методом погружения в масло. Программа искусственного интеллекта использует распознавание образов для наблюдения и анализа нескольких простейших в одном образце крови и выделяет ядро и кинетопласт каждого паразита как специфические характерные черты с помощью карты внимания.
Для оценки производительности программы ИИ созданы два уникальных модуля, которые предоставляют различные статистические показатели, такие как точность, полнота, специфичность, точность, оценка F1, частота неправильной классификации, кривые рабочих характеристик приемника (ROC) и кривые точности в зависимости от полноты (PR). Результаты оценки показывают, что алгоритм ИИ эффективен при выявлении и классификации паразитов. Предоставляя быстрый, автоматизированный и точный инструмент скрининга, эта технология имеет потенциал для трансформации эпиднадзора и контроля заболеваний. Это также может помочь местным должностным лицам в принятии более обоснованных решений по стратегиям блокирования передачи болезней.
Трипаносомоз представляет собой серьезную проблему для глобальных проблем здравоохранения из-за разнообразия зоонозных видов, вызывающих заболевания человека, с широким диапазоном географического распространения за пределами Африканского и Американского континентов, таких как Южная и Юго-Восточная Азия 1,2,3. Африканский трипаносомоз человека (HAT), или сонная болезнь, вызывается Trypanosoma brucei gambiense и T. b. rhodesiense, которые продуцируют хроническую и острую формы соответственно, представляя собой основное распространение в Африке. Возбудитель пар....
Архивные снимки крови и дизайн проекта были одобрены Институциональным комитетом по биобезопасности, Институциональным комитетом по уходу за животными и их использованию факультета ветеринарных наук Университета Чулалонгкорн (IBC No 2031033 и IACUC No 1931027) и Комитетом по этике исследований на людях Технологического института короля Монгкута в Ладкрабанге (EC-KMITL_66_014).
1. Подготовка изображений в формате RAW
В этом исследовании были предложены гибридные алгоритмы глубокого обучения, помогающие автоматически предсказывать положительный результат образца крови при паразитарной инфекции трипаносомы. Заархивированные окрашенные Гимсой образцы крови были отсортированы, чтобы локализоват?.......
Микроскопическое наблюдение за инфекцией Trypanosoma protozoa является ранним и широко используемым, особенно во время эпиднадзора в отдаленных районах, где не хватает квалифицированных специалистов, а трудоемкие и длительные процессы являются препятствием для своевременного информирования.......
Все авторы не раскрывают финансовую информацию и не имеют конфликта интересов.
Эта работа (Исследовательский грант для New Scholar, Grant No. RGNS 65 - 212) был финансово поддержан Канцелярией Постоянного секретаря, Министерством высшего образования, науки, исследований и инноваций (OPS MHESI), Таиландским центром научных исследований и инноваций (TSRI) и Технологическим институтом короля Монгкута в Ладкрабанге. Мы благодарны Национальному исследовательскому совету Таиланда (NRCT) [NRCT5-RSA63001-10] за финансирование исследовательского проекта. M.K. был профинансирован Таиландским фондом научных исследований и инноваций Университета Чулалонгкорн. Мы также благодарим Колледж передовых производственных инноваций Технологического института короля ....
Name | Company | Catalog Number | Comments |
Darknet19, Darknet53 and Densenet201 | Gao Huang, Z. L., Laurens van der Maaten. Densely Connected Convolutional Networks. arXiv:1608.06993 [cs.CV]. (2016) | https://github.com/liuzhuang13/DenseNet | Deep convolutional neural network model that can function to classification Generic name: YOLO model/ detection model? |
Olympus CX31 Model CX31RRBSFA | Olympus, Tokyo, Japan | SN 4G42178 | A light microscope |
Olympus DP21-SAL U-TV0.5XC-3 | Olympus, Tokyo, Japan | SN 3D03838 | A digital camera Generic name: Classification models/ densely CNNs |
Window 10 | Microsoft | Window 10 | Operation system in computers |
YOLO v4-tiny | Naing, K. M. et al. Automatic recognition of parasitic products in stool examination using object detection approach. PeerJ Comput Sci. 8 e1065, (2022). | https://git.cira-lab.com/users/sign_in | Deep convolutional neural network model that can function to both localization and also classification |
https://git.cira-lab.com/users/sign_in |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеСмотреть дополнительные статьи
This article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены