A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The cytochrome c oxidase/sodium dehydrogenase (COX/SDH) double-labeling method allows for direct visualization of mitochondrial respiratory enzyme deficiencies in fresh-frozen tissue sections. This is a straightforward histochemical technique and is useful in investigating mitochondrial diseases, aging, and aging-related disorders.
Mitochondrial DNA (mtDNA) defects are an important cause of disease and may underlie aging and aging-related alterations 1,2. The mitochondrial theory of aging suggests a role for mtDNA mutations, which can alter bioenergetics homeostasis and cellular function, in the aging process 3. A wealth of evidence has been compiled in support of this theory 1,4, an example being the mtDNA mutator mouse 5; however, the precise role of mtDNA damage in aging is not entirely understood 6,7.
Observing the activity of respiratory enzymes is a straightforward approach for investigating mitochondrial dysfunction. Complex IV, or cytochrome c oxidase (COX), is essential for mitochondrial function. The catalytic subunits of COX are encoded by mtDNA and are essential for assembly of the complex (Figure 1). Thus, proper synthesis and function are largely based on mtDNA integrity 2. Although other respiratory complexes could be investigated, Complexes IV and II are the most amenable to histochemical examination 8,9. Complex II, or succinate dehydrogenase (SDH), is entirely encoded by nuclear DNA (Figure 1), and its activity is typically not affected by impaired mtDNA, although an increase might indicate mitochondrial biogenesis 10-12. The impaired mtDNA observed in mitochondrial diseases, aging, and age-related diseases often leads to the presence of cells with low or absent COX activity 2,12-14. Although COX and SDH activities can be investigated individually, the sequential double-labeling method 15,16 has proved to be advantageous in locating cells with mitochondrial dysfunction 12,17-21.
Many of the optimal constitutions of the assay have been determined, such as substrate concentration, electron acceptors/donors, intermediate electron carriers, influence of pH, and reaction time 9,22,23. 3,3'-diaminobenzidine (DAB) is an effective and reliable electron donor 22. In cells with functioning COX, the brown indamine polymer product will localize in mitochondrial cristae and saturate cells 22. Those cells with dysfunctional COX will therefore not be saturated by the DAB product, allowing for the visualization of SDH activity by reduction of nitroblue tetrazolium (NBT), an electron acceptor, to a blue formazan end product 9,24. Cytochrome c and sodium succinate substrates are added to normalize endogenous levels between control and diseased/mutant tissues 9. Catalase is added as a precaution to avoid possible contaminating reactions from peroxidase activity 9,22. Phenazine methosulfate (PMS), an intermediate electron carrier, is used in conjunction with sodium azide, a respiratory chain inhibitor, to increase the formation of the final reaction products 9,25. Despite this information, some critical details affecting the result of this seemly straightforward assay, in addition to specificity controls and advances in the technique, have not yet been presented.
1. Tissue preparation for cryosectioning
2. COX histochemistry
3. SDH histochemistry
4. Determination of mitochondrial dysfunction
5. Appropriate specificity controls
6. Representative Results:
The overall scheme of the COX/SDH double-labeling histochemical assay is illustrated in Figure 2. Representative examples of appropriate COX/SDH double-labeling histochemistry in brain sections from wild-type and prematurely aging mtDNA mutator mice are shown in Figure 3. The dark brown staining in wild-type mice (Figure 3, left panel) showed normal COX activity. Cells with respiratory chain deficiencies, indicated by the blue staining, were revealed in 12 week-old mtDNA mutator mice, and these deficiencies became more widespread as mtDNA mutator mice aged to 46 weeks (Figure 3, center and right panel).
Examples of inappropriate COX/SDH double-labeling in brain sections from wild-type mice due to insufficient COX labeling are shown in Figure 4. Inadequate incubation time for the demonstration of COX activity, or reducing the availability of molecular oxygen by coverslipping the slide during incubation, resulted in a reduced deposition of the DAB reaction product, and thus allowed for formation of the blue formazan end product during the SDH incubation.
COX and SDH activities can also be investigated separately (Figure 5, left and center); however, the sequential labeling is helpful in identifying cells with COX deficiencies, due to the formation of the blue precipitate during the SDH incubation (Figure 3, center and right). Specificity controls for COX and SDH activities can also be done (Figure 5, right).
Figure 1. Mitochondrial respiratory Complexes I-V. The mitochondrial respiratory chain is located within the inner membrane and includes five complexes. The purpose of the respiratory chain is to transport electrons from Complex I to IV and in doing so it creates a proton gradient across the inner membrane used by Complex V (ATPase) to produce ATP. Red hexagons represent subunits encoded by mtDNA. White hexagons represent subunits encoded by nuclear DNA (note that Complex II is completely encoded from the nuclear genome). Thus, mutations in the mitochondrial genome could cause dysfunction of the respiratory chain due to mutations in the subunits of the respiratory chain complexes.
Figure 2. Flow chart of the COX/SDH double-labeling histochemical assay. Dissect the organs of interest, rapidly freeze the tissues on dry ice, and store them at - 80 °C. Collect cryostat sections and keep at - 20 °C until use. Allow sections to air-dry at room temperature for 1 hour. Prepare the incubation medium for COX histochemistry, apply it to the slides, and incubate for 40 minutes at 37 °C. Wash the sections in PBS 4 times for 10 minutes each wash. Prepare the incubation medium for SDH histochemistry, apply it to the slides, and again incubate for 40 minutes at 37 °C. Wash the sections again in PBS, dehydrate in an ethanol series, and then mount and coverslip the slides. The COX/SDH double-labeled sections are ready to view under bright-field microscopy within 1-2 hours.
Figure 3. Representative examples of COX/SDH double-labeling. Brain sections from wild-type and prematurely aging mtDNA mutator mice were sequentially labeled for COX and SDH activities. (Scale bar: 200 μm.) Normal COX activity (indicated by dark brown color) was shown in hippocampus from wild-type mice (left). COX deficiencies (indicated by blue color) were revealed in hippocampus from mtDNA mutator mice (center and right). There was a further decrease in COX activity by 46 weeks of age in mtDNA mutator mice, suggesting widespread exacerbation of respiratory chain dysfunction. The observed mitochondrial dysfunction in mtDNA mutator mice 12 is caused by high levels of mtDNA point mutations as well as increased levels of linear deletions 5.
Figure 4. Examples of inappropriate COX/SDH double-labeling. Brain sections from wild-type mice were sequentially labeled for COX and SDH activities. (Scale bar: 200 μm.) Inadequate incubation times (10 and 25 minutes) for the demonstration of COX activity resulted in a reduced deposition of the brown DAB reaction product, compared to the 40-minute incubation time (left and center). The shortened incubation times allowed for the formation of the blue formazan end product during the SDH incubation, misleadingly suggesting the presence of cells with COX deficiencies. Coverslipping the slides during the COX incubation also resulted in inaccurate formation and deposition of the DAB reaction product (right).
Figure 5. Individual COX and SDH labeling and specificity control. Brain sections from wild-type mice were separately labeled for COX and SDH activities, indicated by the dark brown color and the blue color, respectively (left and center). Although COX and SDH activities can be individually labeled, the sequential labeling has proved to be advantageous in locating cells with mitochondrial dysfunction. An example of a specificity control for COX and SDH activities in brain from a wild-type mouse showed absence of labeling (right). (Scale bar: 200 μm.)
The combined COX/SDH histochemical method enables the visualization of cells with mitochondrial dysfunction. This technique, with early studies dating back to 1968, remains popular, with many considering it the "gold standard" for identifying mitochondrial diseases in patients14,19,26,27. It is now frequently used to investigate mtDNA mutation-driven aging and aging-related disorders 12,13,18,20,21,24. The COX/SDH double-labeling method is often used in parallel with other techniques to identify spe...
No conflicts of interest declared.
This work was supported by the National Institute of Aging (AG04418), National Institute on Drug Abuse, National Institute of Health-Karolinska Institutet Graduate Partnerships Program, Karolinska Institutet, Swedish Research Council, Swedish Brain Power, and Swedish Brain Foundation. Many thanks to Mattias Karlen and Dr. Giuseppe Coppotelli for creative support with Figure 1 and 2, respectively; Karin Pernold for technical assistance; and Drs. Barry J. Hoffer, Lars Olson, and Nils-Göran Larsson for much helpful advice and discussion.
Name of the reagent | Company | Catalogue number | Comments (optional) |
Dry Ice | AGA Gas AB | block form | |
Isopentane (2-methylbutane) | Sigma-Aldrich | 277258 CAS: 78-78-4 | |
Cyrostat embedding solution | Sakura Finetek | Tissue Tek 4583 | |
Cryostat | Microm | Microm Model HM 500M | |
Slides | Thermo Scientific | Super Frost Plus Menzel Gläser J1800AMWZ | |
Cover glasses Borosilicate glass | VWR International | 16004-098 | 24 x 50 mm |
Filter Paper | Munktell Filter AB | Quality: 1350 Article Number: 242 001 | 430 x 430 mm |
3,3′-diaminobenzidine tetrahydrochloride (DAB) | Sigma-Aldrich | Sigma Liquid Substrate System, D7304 | |
Cytochrome c (Type III, from equine heart) | Sigma-Aldrich | C2506 CAS: 9007-43-6 | |
Bovine catalase (from liver) | Sigma-Aldrich | C9322 CAS: 9001-05-2 | |
Nitroblue tetrazolium (NBT) | Sigma-Aldrich | N6876 CAS: 298-83-9 | |
Sodium succinate | Sigma-Aldrich | S2378 CAS: 6106-21-4 | |
Phenazine methosulfate (PMS) | Sigma-Aldrich | P9625 CAS: 299-11-6 | PMS is light sensitive. Shield from light. |
Sodium azide | Sigma-Aldrich | S8032 CAS: 26628-22-8 | |
Xylene | VWR International | EM-XX0060-4 | |
Entellan | VWR International | 100503-870 | |
Malonate (Malonic acid) | Sigma-Aldrich | M1296 CAS: 141-82-2 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved