JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Recently developed imaging techniques using near-infrared fluorescence (NIRF) may help elucidate the role the lymphatic system plays in cancer metastasis, immune response, wound repair, and other lymphatic-associated diseases.

Abstract

The lymphatic vascular system is an important component of the circulatory system that maintains fluid homeostasis, provides immune surveillance, and mediates fat absorption in the gut. Yet despite its critical function, there is comparatively little understanding of how the lymphatic system adapts to serve these functions in health and disease1. Recently, we have demonstrated the ability to dynamically image lymphatic architecture and lymph "pumping" action in normal human subjects as well as in persons suffering lymphatic dysfunction using trace administration of a near-infrared fluorescent (NIRF) dye and a custom, Gen III-intensified imaging system2-4. NIRF imaging showed dramatic changes in lymphatic architecture and function with human disease. It remains unclear how these changes occur and new animal models are being developed to elucidate their genetic and molecular basis. In this protocol, we present NIRF lymphatic, small animal imaging5,6 using indocyanine green (ICG), a dye that has been used for 50 years in humans7, and a NIRF dye-labeled cyclic albumin binding domain (cABD-IRDye800) peptide that preferentially binds mouse and human albumin8. Approximately 5.5 times brighter than ICG, cABD-IRDye800 has a similar lymphatic clearance profile and can be injected in smaller doses than ICG to achieve sufficient NIRF signals for imaging8. Because both cABD-IRDye800 and ICG bind to albumin in the interstitial space8, they both may depict active protein transport into and within the lymphatics. Intradermal (ID) injections (5-50 μl) of ICG (645 μM) or cABD-IRDye800 (200 μM) in saline are administered to the dorsal aspect of each hind paw and/or the left and right side of the base of the tail of an isoflurane-anesthetized mouse. The resulting dye concentration in the animal is 83-1,250 μg/kg for ICG or 113-1,700 μg/kg for cABD-IRDye800. Immediately following injections, functional lymphatic imaging is conducted for up to 1 hr using a customized, small animal NIRF imaging system. Whole animal spatial resolution can depict fluorescent lymphatic vessels of 100 microns or less, and images of structures up to 3 cm in depth can be acquired9. Images are acquired using V++ software and analyzed using ImageJ or MATLAB software. During analysis, consecutive regions of interest (ROIs) encompassing the entire vessel diameter are drawn along a given lymph vessel. The dimensions for each ROI are kept constant for a given vessel and NIRF intensity is measured for each ROI to quantitatively assess "packets" of lymph moving through vessels.

Protocol

All animal studies were performed in accordance with the standards of the University of Texas Health Science Center (Houston, TX), Department of Comparative Medicine, and Center for Molecular Imaging after review and approval of the protocol by their respective Institutional Animal Care and Use Committee (IACUC) or Animal Welfare Committee (AWC).

1. Preparation of Animals 24 Hr Prior to Imaging

The steps below must be done (as needed) the day before lymphatic imaging takes place.

  1. Place animal in an induction box and sedate with isoflurane.
  2. Once the animal is in a state of profound anesthesia (monitored with toe-pinch maneuver), place sedated animal on a diaper/fluff pad and position nose in a nose cone connected to isoflurane gas.
  3. Clip all hair/fur (if any) around the area to be imaged.
  4. Apply depilatory agent (NAIR) to the clipped area and leave it on the skin for up to 3 min.
  5. Gently wipe off all depilatory agent with warm, damp gauze or paper towel.
  6. Gently rinse the skin with warm water and gently dry the area with gauze or paper towel.
  7. Allow animals to recover on a heating pad or under a heat lamp, and return to their cage.

2. Day of Imaging

  1. Reconstitute imaging agent with sterile water, then dilute using sterile, normal (0.85%) saline to achieve 645 μM (5 μg/10 μl) for ICG or 200 μM (6.8 μg/10 μl) for cABD-IRDye800. Keep solutions in dark conditions and use within 6 hr of reconstitution.
  2. Place animal in an induction box and sedate with isoflurane.
  3. Once the animal is in a state of profound anesthesia (monitored with toe-pinch maneuver), place sedated animal on its side on a diaper/fluff pad and position nose in a nose cone connected to gas isoflurane.
  4. Turn off the lights (so the room is dark). If needed, a small desk halogen light can be used for a small amount of light to see injections.
  5. Using an insulin syringe with a 31-gauge needle, inject ID 5 μl to 50 μl of ICG or cABD-IRDye800 in the dorsal aspect of each hind paw and/or on the left and right side of the base of the tail, depending on the area of interest (see Discussion). Each injected dose may range from 0.083 to 1.25 mg/kg (ICG) or 0.113 to 1.7 mg/kg (cABD-IRDye800). Injection volumes will vary with animal strain and injection site. For athymic mice, the volume of injection can be 5 μl (hind paw) or 10 μl (base of tail). If animal is not under the imaging system for the injection(s), place the animal under the imaging system immediately after the injection(s).
  6. If no dye uptake is seen in the lymphatics, step 2.5 will need to be repeated as needed per animal protocol.
  7. Once lymphatics are seen, cover the injection site with black electrical tape or black paper.
  8. Acquire lymphatic images for up to 1 hr using V++ software and a small animal, NIRF imaging system. (Animals are sedated with isoflurane and respirations are monitored while images are acquiring.) While small animal, NIRF imagers are commercially available, we utilize a customized, small animal NIRF imaging system consisting of a 785-nm laser diode (1005-9mm-78503, Intense, North Brunswick, NJ) outfitted with an aspheric lens (C24TME-B, Thorlabs, Newton, NJ), diffuser (ED1-C20, Thorlabs), and filter (LD01-785/10-25, Semrock, Rochester, NY) to create a uniform excitation field that illuminates the animal at an incident fluence rate of less than 1.4 mW per square centimeter10. An electron multiplying charged-coupled device (EMCCD, PhotonMax512, Princeton Instruments, Trenton, NJ) camera system with two 830-nm filters (AND11333, Andover Corp., Salem, NH) and a 28-mm Nikkor lens (1992, Nikon, Melville, NY) is used to capture lymphatic images with integration times of 200 msec for dynamic imaging and 800 msec for static imaging5. See Figure 1 for system configuration, the Table for additional details of each component, and the Discussion for a brief discussion of key imager properties.
  9. Allow animals to recover on a heating pad or under a heat lamp and return to their cage, or euthanize.
  10. Analyze images using ImageJ or MATLAB software. See Figure 6.

Access restricted. Please log in or start a trial to view this content.

Results

Example of NIRF Lymphatic Imaging in Mice

When ICG or cABD-IRDye800 is injected ID at the base of the tail of a normal mouse, the lymphatic vasculature between the injection site at the base of the tail and the inguinal lymph node (LN) should be immediately visualized. Shortly after injection (a few seconds to minutes), the lymphatic vessel between the inguinal LN and the axillary LN should be visualized as seen in Figure 2. Since the lymphatics in mice vary from animal to animal...

Access restricted. Please log in or start a trial to view this content.

Discussion

We use a custom, small animal NIRF imaging system to capture images of labeled lymph vessels in mice. To construct movies of lymph movement, 300 or more images are collected. For functional analysis of lymphatics from movies, two or more ROIs are manually drawn along a lymph vessel. The dimensions of the ROIs are kept constant for each vessel and are approximately the diameter of the vessel. While whole animal spatial resolution can depict fluorescent lymphatic vessels of 100 microns or less, a macrolens for fine...

Access restricted. Please log in or start a trial to view this content.

Disclosures

Authors have nothing to disclose, but some authors are listed on a patent.

Acknowledgements

This work was supported by the following grants to Eva Sevick: NIH R01 CA128919 and NIH R01 HL092923.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Indocyanine green (ICG)Patheon Italia S.P.A.NDC 25431-424-02Reconstitute to 645 μM (5 μg/10 μL)
Cyclic Albumin Binding Domain(cABD) BachemCustomReconstitute to 200 μM (6.8 μg/10 μL)
IRDye800Li-CORIRDye 800CWReconstitute according to manufacture's instructions; conjugate with cABD at equilmolar concentrations
Sterile WaterHospira, Inc., Lake Forest, ILNDC 0409-4887-10
NAIRChurch Dwight Co., Inc.Local Storeswww.nairlikeneverbefore.com
Imaging System (components below)Center for Molecular ImagingN/ACustom-built in our laboratories.
Electron-multiplying charge-coupled device (EMCCD) cameraPrinceton Instruments, Trenton, NJPhoton Max 512
Nikon camera lensNikon Inc., Melville, NYModel No. 1992, Nikkor 28mm
Optical filter Andover Corp., Salem,NHANDV11333Two 830.0/10.0 nm bandpass filters are used in front of lens
785-nm laser diodeIntense Ltd, North Brunswick, NJ1005-9MM-78503500 mW of optical output
Collimating opticsThorlabs, Newton, NJC240TME-BCollimates laser output prior to cleanup filter
Clean-up filterSemrock, Inc., Rochester, NYLD01-785/10-25Removes laser emission in fluorescence band
Optical diffuserThorlabs, Newton, NJED1-C20Diffuses the laser over the animal
V++Digital Optics, Browns Bay, Auckland, New ZealandVersion 5.0Software used to control camera system and save images to computer. http://digitaloptics.net/
Analytic Software Either of the following software packages can be used for image analysis
ImageJNational Institutes of Health, Bethesda, MDMost current version availableFreeware available at http://rsbweb.nih.gov/ij/
MATLABMathWorks, Natick, MAVersion 2008a or laterhttp://www.mathworks.com/

References

  1. Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371-1380 (2011).
  2. Rasmussen, J. C., Tan, I. C., Marshall, M. V., Fife, C. E., Sevick-Muraca, E. M. Lymphatic imaging in humans with near-infrared fluorescence. Curr. Opin. Biotechnol. 20, 74-82 (2009).
  3. Rasmussen, J. C., et al. Human Lymphatic Architecture and Dynamic Transport Imaged Using Near-infrared Fluorescence. Transl. Oncol. 3, 362-372 (2010).
  4. Sevick-Muraca, E. M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu. Rev. Med. 63, 217-231 (2012).
  5. Kwon, S., Sevick-Muraca, E. M. Noninvasive quantitative imaging of lymph function in mice. Lymphat. Res. Biol. 5, 219-231 (2007).
  6. Kwon, S., Sevick-Muraca, E. M. Mouse phenotyping with near-infrared fluorescence lymphatic imaging. Biomed Opt Express. 2, 1403-1411 (2011).
  7. Marshall, M. V., et al. Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. The Open Surgical Oncology Journal. 2, 12-25 (2010).
  8. Davies-Venn, C. A., et al. Albumin-Binding Domain Conjugate for Near-Infrared Fluorescence Lymphatic Imaging. Mol. Imaging Biol. , (2011).
  9. Sharma, R. Quantitative imaging of lymph function. Am. J. Physiol. Heart Circ. Physiol. 292, 3109-3118 (2007).
  10. Kwon, S., Sevick-Muraca, E. M. Functional lymphatic imaging in tumor-bearing mice. J. Immunol. Methods. 360, 167-172 (2010).
  11. Karlsen, T. V., McCormack, E., Mujic, M., Tenstad, O., Wiig, H. Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am. J. Physiol. Heart Circ. Physiol. 302, 391-401 (2012).
  12. Zhou, Q., Wood, R., Schwarz, E. M., Wang, Y. J., Xing, L. Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis Rheum. 62, 1881-1889 (2010).
  13. Adams, K. E., et al. Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema. Biomed. Opt. Express. 1, 114-125 (2010).
  14. Tan, I. C., et al. Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging. Arch. Phys. Med. Rehabil. 92, 756-764 (2011).
  15. Lapinski, P. E., et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733-747 (2012).
  16. Maus, E. A., et al. Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema. Head Neck. 34, 448-453 (2012).
  17. Galanzha, E. I., Tuchin, V. V., Zharov, V. P. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World J. Gastroenterol. 13, 192-218 (2007).
  18. Schramm, R., et al. The cervical lymph node preparation: a novel approach to study lymphocyte homing by intravital microscopy. Inflammation research : official journal of the European Histamine Research Society. 55, 160-167 (2006).
  19. Hall, M. A., et al. Imaging prostate cancer lymph node metastases with a multimodality contrast agent. Prostate. 72, 129-146 (2012).
  20. Zhu, B., Sevick-Muraca, E. M. Minimizing excitation leakage and maximizing measurement sensitivity for molecular imaging with near-infrared fluorescence. J. Innovat. Opt. Health Sci. 4, 301-307 (2011).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Non invasiveOptical ImagingLymphatic VasculatureMouseCirculatory SystemFluid HomeostasisImmune SurveillanceFat AbsorptionLymphatic SystemHealth And DiseaseLymphatic ArchitectureLymph Pumping ActionNear infrared Fluorescent DyeGen III intensified Imaging SystemHuman DiseaseAnimal ModelsGenetic BasisMolecular BasisSmall Animal ImagingIndocyanine Green DyeCyclic Albumin Binding Domain PeptideNIRF Signals

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved