JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Simple and Efficient Technique for the Preparation of Testicular Cell Suspensions

Published: August 4th, 2013

DOI:

10.3791/50102

1Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 2Servicio de Citometría de Flujo y Clasificación Celular (SECIF), Instituto de Investigaciones Biológicas Clemente Estable, 3Sección Bioquímica, Facultad de Ciencias, Universidad de la República

A novel protocol for the mechanical preparation of testicular cell suspensions from rodent material, avoiding enzymes and detergents, is described. The method is very simple, fast, reproducible, and renders good quality cell suspensions, which are suitable for flow sorting and RNA extraction.

Mammalian testes are very complex organs that contain over 30 different cell types, including somatic testicular cells and different stages of germline cells. This heterogeneity is an important drawback concerning the study of the bases of mammalian spermatogenesis, as pure or enriched cell populations in certain stages of sperm development are needed for most molecular analyses1.

Various strategies such as Staput2,3, centrifugal elutriation1, and flow cytometry (FC)4,5 have been employed to obtain enriched or purified testicular cell populations in order to enable differential gene expression studies.

It is required that cells are in suspension for most enrichment/ purification approaches. Ideally, the cell suspension will be representative of the original tissue, have a high proportion of viable cells and few multinucleates - which tend to form because of the syncytial nature of the seminiferous epithelium6,7 - and lack cell clumps1 . Previous reports had evidenced that testicular cell suspensions prepared by an exclusively mechanical method clumped more easily than trypsinized ones1 . On the other hand, enzymatic treatments with RNAses and/or disaggregating enzymes like trypsin and collagenase lead to specific macromolecules degradation, which is undesirable for certain downstream applications. The ideal process should be as short as possible and involve minimal manipulation, so as to achieve a good preservation of macromolecules of interest such as mRNAs. Current protocols for the preparation of cell suspensions from solid tissues are usually time-consuming, highly operator-dependent, and may selectively damage certain cell types1,8 .

The protocol presented here combines the advantages of a highly reproducible and extremely brief mechanical disaggregation with the absence of enzymatic treatment, leading to good quality cell suspensions that can be used for flow cytometric analysis and sorting4, and ulterior gene expression studies9 .

1. Preparation of Cell Suspensions

  1. Sacrifice the specimen to be used following the recommendations of the specialized committees such as IACUC or equivalent (in Uruguay, National Commission for Animal Experimentation [CNEA]). In our case, an overdose of pentobarbital was administrated.
  2. Dissect the testes following standard approved procedures and place them in a 96 mm glass Petri dish on ice, containing 10 ml of ice-cold DMEM supplemented with 10% fetal calf serum.
  3. Remove the tunica a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

An example of a well disaggregated cell suspension from rat testes prepared with the protocol described here is shown in Figure 1.

In comparison to enzymatic treatments6,8 and to previously described mechanical disaggregation methods2, the one presented here is much faster, involves less handling, is easily reproducible (not operator-dependant), and renders scarce cell debris (especially compared to other mechanical methods) and very few multinucleates (.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The optimized method described here enables the preparation of cell suspensions from rodent testicular tissue in a very fast and reproducible way, avoiding enzyme and detergent treatment and maintaining good cell integrity and type proportions. The brevity of the procedure (the 15 min span includes testis dissection, tissue cutting, and processing), minimal handling involved, and absence of enzymatic treatments are some of the main advantages. All these would account for the good preservation of short life macromolecules.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was partly supported by CSIC (I+D project C022) and PEDECIBA. The authors want to thank Mariela Bollati and Valentina Porro from the Cell Biology Unit (Institut Pasteur de Montevideo) for their generous collaboration concerning the MoFlo cell sorter, and Merial-Montevideo for gently providing all the guinea pig specimens used in this project. Figure 1 was reproduced with permission of BioMed Central; Figures 2 and 3, and Table 1 with permission of S. Karger AG, Basel; and Figures 4 and 5 were reproduced or adapted with permission of John Wiley & Sons, In....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Reagent/Material Company Catalogue Number Comments
Medimachine system BD 340587
Medicon unit (50 μm) BD 340591
Filcon unit (50 μm) BD 340603
DMEM Gibco 430-2100
Fetal calf serum PAA A11-151
NDA Chemos BmbH 277081
Hoechst 33342 Sigma-Aldrich 14533 Stock solution 5 mg/ml; used at a final concentration of 5 μg/ml
Propidium iodide Sigma-Aldrich 287075 Stock solution 1 mg/ml; used at a final concentration of 50 μg/ml

  1. Meistrich, M. L., Prescott, D. M. Separation of spermatogenic cells and nuclei from rodent testes. Methods of Cell Biology. 15, 15-54 (1977).
  2. Lam, D. M. K., Furrer, R., Bruce, W. R. The separation, physical characterization, and differentiation kinetics of spermatogonial cells of the mouse. Proc. Natl. Acad. Sci. USA. 65, 192-199 (1970).
  3. Romrell, L. J., Bellve, A. R., Fawcet, D. W. Separation of mouse spermatogenic cells by sedimentation velocity. Dev. Biol. 19, 119-131 (1976).
  4. Geisinger, A., Rodríguez-Casuriaga, R. Flow cytometry for gene expression studies in mammalian spermatogenesis. Cytogenet. Genome Res. 128, 46-56 (2010).
  5. Getun, I. V., Torres, B., Bois, P. R. Flow cytometry purification of mouse meiotic cells. J. Vis. Exp. (50), e2602 (2011).
  6. Meistrich, M. L. Separation of mouse spermatogenic cells by velocity sedimentation. J. Cell Physiol. 80, 299-312 (1972).
  7. Meistrich, M. L., Bruce, W. R., Clermont, Y. Cellular composition of fractions of mouse testis cells following velocity sedimentation separation. Exp. Cell Res. 79, 213-227 (1973).
  8. Malkov, M., Fisher, Y., Don, J. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol. Rep. 59, 84-92 (1998).
  9. Rodríguez-Casuriaga, R., Geisinger, A., Santiñaque, F., López, B., Folle, G. High-purity flow sorting of early meiocytes based on DNA analysis of guinea pig spermatogenic cells. Cytometry A. 79, 625-634 (2011).
  10. Davey, H. M., Hexley, P. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ. Microbiol. 13, 163-171 (2011).
  11. Rodríguez-Casuriaga, R., Geisinger, A., López-Carro, B., Porro, V., Wettstein, R., Folle, G. A. Ultra-fast and optimized method for the preparation of rodent testicular cells for flow cytometric analysis. Biol. Proced. Online. 11, 184-195 (2009).
  12. Spanò, M., Evenson, D. P. Flow cytometric analysis for reproductive biology. Biol Cell. 78, 53-62 (1993).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved