A subscription to JoVE is required to view this content. Sign in or start your free trial.
Plants offer a novel system for the production of pharmaceutical proteins on a commercial scale that is more scalable, cost-efficient and safe than current expression paradigms. In this study, we report a simple and convenient, yet scalable approach to introduce target-gene containing Agrobacterium tumefaciens into plants for protein transient expression.
Mammalian cell culture is the major platform for commercial production of human vaccines and therapeutic proteins. However, it cannot meet the increasing worldwide demand for pharmaceuticals due to its limited scalability and high cost. Plants have shown to be one of the most promising alternative pharmaceutical production platforms that are robust, scalable, low-cost and safe. The recent development of virus-based vectors has allowed rapid and high-level transient expression of recombinant proteins in plants. To further optimize the utility of the transient expression system, we demonstrate a simple, efficient and scalable methodology to introduce target-gene containing Agrobacterium into plant tissue in this study. Our results indicate that agroinfiltration with both syringe and vacuum methods have resulted in the efficient introduction of Agrobacterium into leaves and robust production of two fluorescent proteins; GFP and DsRed. Furthermore, we demonstrate the unique advantages offered by both methods. Syringe infiltration is simple and does not need expensive equipment. It also allows the flexibility to either infiltrate the entire leave with one target gene, or to introduce genes of multiple targets on one leaf. Thus, it can be used for laboratory scale expression of recombinant proteins as well as for comparing different proteins or vectors for yield or expression kinetics. The simplicity of syringe infiltration also suggests its utility in high school and college education for the subject of biotechnology. In contrast, vacuum infiltration is more robust and can be scaled-up for commercial manufacture of pharmaceutical proteins. It also offers the advantage of being able to agroinfiltrate plant species that are not amenable for syringe infiltration such as lettuce and Arabidopsis. Overall, the combination of syringe and vacuum agroinfiltration provides researchers and educators a simple, efficient, and robust methodology for transient protein expression. It will greatly facilitate the development of pharmaceutical proteins and promote science education.
Since the 1970s, plants have been explored as alternatives to mammalian, insect, and bacterial cell cultures for the commercial production of recombinant proteins and protein therapeutics 1. Plant-based systems for the expression of biopharmaceuticals have shown promise in recent years as several novel treatments for diseases, like Gaucher's Disease 2, and avian H5N1 influenza 3, have shown success in clinical trials. The development of competent mechanisms for recombinant protein expression in plants in the decades since those initial experiments has created the potential for plant-based systems to alter the current paradigm of protei....
1. Plant Growth
1. Expression of Fluorescent Proteins by Syringe Infiltration
To demonstrate the effectiveness of syringe infiltration of Agrobacterium into plant tissue, we tested the expression of two fluorescent proteins - GFP and DsRed - by two different deconstructed plant viral vectors - geminiviral and MagnICON - in N. benthamiana. For N. benthamiana leaves that were entirely infiltrated with Agrobacteria containing geminiviral vectors, GFP expression was observed over .......
The increasing demands for protein-based pharmaceuticals worldwide require new production platforms that are robust, scalable, low-cost and safe. Plants have shown to be one of the most promising alternative production systems for pharmaceutical protein production. In recent years, the development of deconstructed virus-based vectors has enabled transient expression of proteins in plants, which greatly enhances the speed and yield of plant expression systems 2,10. To further optimize the utility of the transie.......
We thank R. Sun and other students of Chen's Laboratory for their contribution to plant material generation. We also thank Dr. D. Green for his support of undergraduate research in the College of Technology and Innovation (CTI). This research was supported in part by NIH grants U01 AI075549 and 1R21AI101329 to Q. Chen, and a SSE grant from CTI of Arizona State University to Q. Chen. K. Leuzinger, M. Dent, J. Hurtado, and J. Stahnke are undergraduate students supported by the SSE grant.
....Name | Company | Catalog Number | Comments |
Reagents | |||
GFP | Invitrogen | V353-20 | www.invitrogen.com See reference: Lico and Chen, et al 2008 |
DsRed | Clontech | 632152 | www.clontech.com See reference: Baird and Zacharias, et al 2000 |
MagnICON Vector | Icon Genetics | n/a | www.icongenetics.com See reference: giritch and Marillonnet, et al 2006 |
Geminiviral Vector | Author's Lab | n/a | See reference: Chen and He, et al 2011 |
N. benthamiana | Author's Lab | n/a | herbalistics.com.au |
Agrobacterium tumefaciens strain gv3101 | Author's Lab | n/a | See reference: Lai and Chen 2012 |
LB Agar Carbenicillin-100, plates | Sigma | L0418 | www.sigmaaldrich.com |
LB Agar Kanamycin-50, plates | Sigma | L0543 | www.sigmaaldrich.com |
Magnesium sulfate hepa hydrate | Sigma | M2773-500 g | www.sigmaaldrich.com |
Bacto-Tryptone | Fisher | 73049-73-7 | www.fishersci.com |
Bacto Yeast Extract | Becton, Dickinson & CO. | REF 212750 | www.bd.com |
Difco Nutrient Broth | Becton, Dickinson & CO. | REF 234000 | www.bd.com |
MES hydrate Buffer | Sigma | M8250-1kg | www.sigmaaldrich.com |
Carbenicillin | Sigma | C1613-1ML | www.sigmaaldrich.com |
Kanamycin | Sigma | 70560-51-9 | www.sigmaaldrich.com |
Sodium Hydroxide | Sigma | 221465 | www.sigmaaldrich.com |
Jack's Fertilizer | Hummert International | Jul-25 | www.hummert.com |
Equipment | |||
Vacuubrand MD4 Vacuum Pump | Fisher | 13-878-113 | www.fishersci.com |
Vacuum Air Regulator Valve | Fisher | NC9386590 | www.fishersci.com |
Desiccator 12 1/8" with O ring | Fisher | 08-594-15C | www.fishersci.com |
3 L Tub | Rubber-Maid | n/a | Rubbermaid Servn' Saver Bowl, 10-cup will work |
plate/shelf 230ML | Fisher | NC9489269 | www.fishersci.com |
Peat Pellet | Hummert International | 14-2370-1 | www.hummert.com |
Propagation Tray Dome | hydrofarm | 132052 | www.hydroponics.net |
Propagaiton Tray | hydrofarm | 138758 | www.hydroponics.net |
Virbo Hand Seeder | Gro-Mor INC | n/a | www.gro-morent.com |
Flora Cart 4 shelf | Hummert International | 65-6924-1 | www.hummert.com |
15 ml Round Bottom Culture Tubes | Sigma | CLS430172-500EA | http://www.sigmaaldrich.com |
Spectrophotometer | Bio-Rad | 170-2525 | www.bio-rad.com |
Spectrophotometer Cuvettes | Bio-Rad | 223-9950 | www.bio-rad.com |
Microcentrifuge Tubes | USA Scientific | 1415-2500 | www.usascientific.com |
Benchtop Centrifuge | Bio-Rad | 166-0602EDU | www.bio-rad.com |
Incubator/Shaker | Eppendorf | Excella E25 | www.eppendorf.com |
Ultraviolet Light Model#: UVGL-25 | UVP | 95-0021-12 | www.uvp.com |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved