A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Time courses for the glycosylase activity of 8-oxoguanine DNA glycosylase are biphasic exhibiting a burst of product formation and a linear steady-state phase. Utilizing quench-flow techniques, the burst and the steady-state rates can be measured, which correspond to excision of 8-oxoguanine and release of the glycosylase from the product DNA, respectively.
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, koff). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (koff). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.
An aerobic environment hastens genomic instability. A major promutagenic DNA lesion resulting from oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoG). This is due to the ambiguous coding potential of 8-oxoG. Human 8-oxoguanine DNA glycosylase (OGG1) is responsible for initiating base excision repair of 8-oxoG. The glycosylase activity of OGG1 excises the 8-oxoG base resulting in product DNA with an apurinic site (AP-site). A weak lyase activity of OGG1 can incise the AP-site in some instances.
Kinetic characterization of DNA glycosylases generally finds that they exhibit biphasic time courses. After an initial fast phase of product formation (i.e. burst), a linear steady-state phase is observed1-3. This behavior is indicative of a step following chemistry (i.e. conformational change or product release) being rate-limiting during the linear portion of the time course, whereas the burst phase, often referred to as the transient phase, corresponds to product formation at the enzyme active site during the first cycle of the reaction. When product release is rate limiting during the steady-state phase, activity measurements provide a qualitative measure of product DNA binding affinity, but do not provide kinetic information concerning events at the enzyme active site (i.e. chemistry). Accordingly, methods to isolate and measure the exponential pre-steady-state burst phase are needed to probe events during the first enzymatic turnover at the enzyme's active site4.
There are three standard kinetic approaches to characterize the catalytic behavior of OGG1, (1) steady-state, (2) pre-steady-state, and (3) single-turnover. These approaches differ from one another by the concentration of enzyme in the reaction mixture and the enzyme to substrate ratio utilized in each approach. In a typical steady-state approach, sometimes referred to as multiple turnover kinetics, low concentrations of enzyme are used to follow product formation. The substrate concentration greatly exceeds the enzyme concentration so that multiple enzymatic turnovers do not significantly affect substrate concentration. In this situation, time courses should be linear and it is often difficult to discern whether a burst occurred during the first turnover due to the low enzyme concentration used in this approach; note that burst amplitude is equivalent to the enzyme concentration. This can be overcome by using a higher enzyme concentration and extrapolating the linear time course to zero time to detect whether the first enzymatic turnover occurred quickly. The intercept on the ordinate (y-axis) should be proportional to the enzyme concentration and provides a measure of the enzyme actively engaged with substrate. Although this approach can in principle provide evidence for the existence of a burst phase, a different approach is required to measure the kinetics of the burst phase. In many instances the burst phase is too fast to measure by manual mixing and quenching techniques. In this situation, pre-steady-state and single-turnover kinetic (i.e. transient kinetic) approaches often require a rapid-mixing and quenching instrument to follow early time points of a reaction5. In a pre-steady-state approach high concentrations of enzyme are used so that a significant amount of product is formed during the first turnover. Since multiple turnovers are followed to observe catalytic cycling (i.e. the linear phase that follows the burst), substrate concentration is greater than the enzyme concentration ([enzyme] < [substrate]). To isolate events at the active site of the enzyme without catalytic cycling, single-turnover conditions are utilized. In this case, substrate is saturated with enzyme (E>>S) so that all of the substrate will participate in the 'single turnover' and will typically exhibit a single-exponential time course.
As noted above for enzymes that exhibit a burst phase, product release (koff) often limits the rate of the steady-state phase of the time course. The rate of product release (vss, conc./time) can be determined from the slope of the linear steady-state phase. The active enzyme concentration (E) is needed to convert the rate of product release to an intrinsic rate constant where koff = vss/[E]. Importantly, the active enzyme concentration is typically lower than the measured protein concentration due to impurities, inactive enzyme, enzyme non-productively bound to substrate, and the method used to determine protein concentration. The active enzyme concentration can be determined from the burst amplitude when product release is slow. Thus, extrapolating a steady-state time course to zero time provides an estimate of active enzyme needed to calculate koff (product release) from the observed steady-state rate.
To measure the kinetics of the burst, a pre-steady-state approach is necessary to follow product formation during the first turnover that occurs prior to the linear steady-state phase. The burst kinetics follows the formation of enzyme-product intermediate. Once the reaction is initiated by mixing enzyme with substrate, the amount of the enzyme-product rapidly increases until the reaction reaches a steady state phase. If catalysis is much more rapid than product release, the amplitude of the burst is equal to actively engaged enzyme and the observed exponential approach to equilibrium (kobs) corresponds to the rate of chemical conversion of substrate to product, assuming that the reverse rate of chemistry is negligible.
In some instances catalytic cycling interferes with a pre-steady-state analysis, such as when the magnitudes of rates for chemistry and product release are not significantly different. In this case, employing excess enzyme relative to substrate prevents catalytic cycling and limits substrate bound with enzyme to a single turnover. Accordingly, the first chemical step of the reaction can be isolated and accurately determined as the first-order rate constant (kobs). This rate constant should be similar to kobs determined from the pre-steady-state approach described above.
Here we describe how these kinetic approaches can be used to analyze the glycosylase activity of OGG1.
1. Preparation of Enzyme and DNA Substrate
2. Measurement of Steady-State Time Course and Active Site Titration of OGG1
2.1. Sample preparation and steady-state time course
2.2. Imaging of the gel
2.3. Data analysis
3. Measurement of Pre-steady-state Time Course
As shown in Figure 2, product formation during the burst phase is too fast to measure by manual mixing and quenching. Hence, a rapid quench-flow instrument can provide a powerful method to measure rapid reactions that occur on the millisecond time scale (Figure 3)5. The instrument uses a computer-controlled drive motor to rapidly mix and quench reactions after specified reaction times. For example, use a Kintek RQF-3 Rapid Quench-Flow Instrument to measure the initial burst phase and subsequent steady-state phase of product formation catalyzed by OGG1. Rapid Quench-Flow Instruments are available from several manufacturers.
3.1. Preparation of sample
Separately prepare DNA substrate and OGG1 solutions in 1.5 ml tubes as described in 2-1. The concentrations of DNA and active OGG1 are 400 nM and 80 nM, respectively. This results in final concentrations of 200 nM DNA and 40 nM active OGG1 after mixing 1:1 (v/v).
3.2. Preparation of rapid quench-flow instrument
3.3. Pre-steady-state time course
3.4. Data analysis
Fit the time courses of product formation by non-linear regression analysis to an equation with a rising exponential and linear terms (Equation 2) providing the first-order rate constant (kobs), the amplitude of the burst (A0), and a linear rate (vss).
4. Single-turnover Time Course
Steady-state kinetic analysis was performed by using 200 nM DNA substrate and four different apparent concentrations of OGG1 (15, 30, 45, and 60 nM) as determined by a Bradford protein assay2. The time courses of product formation were fit to a linear equation to determine the y-intercept, which were 2.2, 11, 15, and 26 nM, respectively, relative to each protein concentration (Figure 2B). The y-intercepts were further plotted relative to each actual protein concentration (Figure 2C
The kinetic approaches described here outline methods to define elementary kinetic constants. If a time course of product formation is biphasic with the first enzymatic turnover occurring rapidly, then a step after chemistry is rate-limiting during subsequent catalytic turnovers. In the case of OGG1, the first turnover can be measured using high enzyme concentrations with either limiting (SE) DNA concentrations. In the first case, the reaction is limited to a 'single-turnover' and provides a measure ...
Authors have nothing to disclose.
We thank Dr. Julie K. Horton for critical reading of the manuscript and Dr. Rajendra Prasad for helpful suggestions and discussions. Portions of this research were originally published in The Journal of Biological Chemistry, Sassa A et. al., "DNA Sequence Context Effects on the Glycosylase Activity of Human 8-Oxoguanine DNA Glycosylase." J Biol Chem. 287, 36702-36710 (2012) 2. This work was supported, in whole or in part, by National Institutes of Health Research Project Grant Z01-ES050158 in the Intramural Research Program, NIEHS.
Name | Company | Catalog Number | Comments |
Reagent/Material | |||
5’-6-FAM labeled oligonucleotides containing a single 8-oxoG | Eurofins MWG Operon | 5’-P32 radiolabeled oligonucleotides can be used as well. Polyacrylamide gel purification grade is recommended. | |
Unlabeled oligonucleotides (complementary strand) | Eurofins MWG Operon | Polyacrylamide gel purification grade is recommended. | |
1 ml BD Luer Lock disposable syringe | BD Medical | 309628 | Lue Lock disposable syringe from other vendors can be used as well. |
10 ml BD Luer Lock disposable syringe | BE Medical | 309604 | Luer Lock disposable syringe from other vendors can be used as well. |
Equipment | |||
Circulating water bath | Any vender | ||
RQF-3 Rapid Quench-Flow Instrument | KinTek Corporation | Rapid Quench-Flow Instrument from other vendors can be used as well. | |
Typhoon Phosphorimager 8600 | GE Healthcare Life Sciences | Imager from other vendors can be used as well. | |
KaleidaGraph | Synergy Software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved