A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A technique for transplanting "Extreme Anterior Domain" facial tissue between Xenopus laevis embryos has been developed. Tissue can be moved from one gene expression background into another, allowing the study of local requirements for craniofacial development and for signaling interactions between facial regions.
Craniofacial birth defects occur in 1 out of every 700 live births, but etiology is rarely known due to limited understanding of craniofacial development. To identify where signaling pathways and tissues act during patterning of the developing face, a 'face transplant' technique has been developed in embryos of the frog Xenopus laevis. A region of presumptive facial tissue (the "Extreme Anterior Domain" (EAD)) is removed from a donor embryo at tailbud stage, and transplanted to a host embryo of the same stage, from which the equivalent region has been removed. This can be used to generate a chimeric face where the host or donor tissue has a loss or gain of function in a gene, and/or includes a lineage label. After healing, the outcome of development is monitored, and indicates roles of the signaling pathway within the donor or surrounding host tissues. Xenopus is a valuable model for face development, as the facial region is large and readily accessible for micromanipulation. Many embryos can be assayed, over a short time period since development occurs rapidly. Findings in the frog are relevant to human development, since craniofacial processes appear conserved between Xenopus and mammals.
To understand mechanisms underlying craniofacial birth defects1-2, important tissues and their signaling contributions during craniofacial development must be identified. In the frog Xenopus laevis, part of the face, including the mouth and nostrils form from the "Extreme Anterior Domain" (EAD), where ectoderm and endoderm are directly juxtaposed3-4. The EAD also acts as a signaling center to influence surrounding tissues, including the cranial neural crest, which forms the jaws and other facial regions5. To identify genes that contribute to EAD function, a 'face transplant' technique was developed, where tissue is transplanted from a donor into a host embryo, after removing the corresponding host region. Following the transplant, resulting facial development is assessed. Thus, the effects of loss of function (LOF) or gain of function (GOF) for a specific gene in the EAD are analyzed locally, where the rest of the head and body is composed of wild type tissue. The reciprocal transplant can be performed, where wild type tissue is transplanted into embryos with global LOF or GOF in specific genes. Transplantation has been frequently used in Xenopus and chick studies6. For example, Xenopus transplantation has addressed homogenetic neural induction, lens and neural competence, and neural crest migration7-10. Quail-chick chimeric grafting has analyzed development of the anterior neural plate, anterior neural ridge, neural crest, and cranial bones11-14. This is the first transplant technique for study of craniofacial development in Xenopus. This technique has demonstrated a novel role for the Wnt inhibitors Frzb1 and Crescent in regulating basement membrane formation in the presumptive mouth5. Xenopus laevis is an ideal model for study of craniofacial development as embryos are large, develop externally, and the face is readily visible, allowing micromanipulation and imaging of development. Mechanisms underlying facial development appear conserved, indicating that findings made in the frog provide insight into human development4,15-16.
1. Preparing Reagents
2. Preparing Glass Operating Tools
3. Preparing for the Embryo Operation
4. Preoperation Embryo Preparation
5. Performing the Face Transplant Surgery
6. Face Transplant Post-operation Recovery
Transplanted tissue should be fully inserted into the host head after transplantation as shown in Figure 3A, and have a glass bridge appropriately placed on the embryo's face, as shown in Figure 2Bc. The transplanted donor tissue must be correctly sized for the host opening, for the transplant to be successful. The EAD tissue should not protrude from the head, in any way, as seen in Figures 3B and 3C. Additionally, the face transplant should not be rotat...
Critical Steps and Limitations: The EAD face transplant procedure is time and work intensive. It requires practice, steady hands, and dexterity to perfect. The face transplant protocol relies on the researcher's ability to efficiently remove and transplant tissue. If one takes too long to insert the transplant into the host's face, the host face will begin to contract and heal. Forceps can be used to delicately expand the facial region. However, if significant wound contraction has occurred, the transplant will no...
The authors have nothing to disclose.
We thank Radek Sindelka for his help, and Cas Bresilla for assisting with frog husbandry and embryo preparation. This work was funded by the NIH via the grant R01DE021109 to H.L.S. Laura Jacox was funded by the Herschel Smith Graduate Fellowship at Harvard University and an F30 individual fellowship grant F30DE022989-01 through the NIDCR.
Name | Company | Catalog Number | Comments |
Pasteur pipette | VWR | 14672-400 | Lime Glass |
Size 5 3/4 in | Cotton Plugged | ||
Graduated Transfer Pipette | VWR | 16001-180 | Disposable |
#5/45 forceps | Fine Science Tools by Dupont medical | 11251-35 | Angled 45° |
Standard Pattern Forceps | Fine Science Tools | 11000-20 | Straight; serrated tip; stainless steel |
Capillary Tubing (for needles) | FHC | 30-30-1 | Borosil 1.0 mm OD x 0.5 mm ID/Fiber |
Cover slip | VWR | 48393 252 | 24 x 60 mm micro cover glass; |
Ficoll 400 | Sigma-Aldrich | F9378 | |
Needle Puller | Sutter Instrument Co | Needle Puller: discontinued Filament: FB300B | The most similar, currently available needle puller is the P-97. For filaments, use Sutter 3.00 mm square box filaments, 3.0 mm wide. |
Model P-80 | Flaming / Brown micropipette puller | ||
Stereomicroscope | Zeiss | ||
Stereomicroscope Lighting by Fostec | Fostec | Use a light box with 2 fiberoptic arms. | |
Nickel Plated Pin Holder | Fine Science Tools | 26018-17 | Jaw Opening Diameter: 0-1 mm |
Moria Nickel Plated Pin Holder | Fine Science Tools | 26016-12 | Jaw opening Diameter: 0-1 mm |
Tungsten Needles | Fine Science Tools | 10130-05 | 0.125 mm Rod diameter |
Van Aken Plastalina | Blick | #33268-2981 | |
Modeling Clay- white, red, or yellow | |||
mMessage mMashine SP6 or T7 Kit | Ambion | AM1340 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved