A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Sea lamprey lose the gall bladder and bile ducts during metamorphosis, a process similar to human biliary atresia. A new fixation and clarification method (CLARITY) was modified to visualize the entire biliary tree using laser scanning confocal microscopy. This method provides a powerful tool to study biliary degeneration.
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.
Sea lamprey develop through three distinct life stages1,2. Larval sea lamprey (L) spend most time in burrows as benthic filter feeders. After going through seven metamorphic stages of dramatic changes in external morphology and reorganization in internal organs3, the resulting juveniles (JV) enter a parasitic stage during which they feed on blood and tissue fluids from host fish, increasing the body mass more than 100 times. After 1.0 to 1.5 years feeding on the host fish in the ocean or large lakes, adults cease feeding during the early spring and migrate into rivers to spawn and then die1,2.
During metamorphosis, the sea lamprey liver loses the gall bladder and the entire biliary tree, an evolutionary mutant phenotype that mimics the human infant disease biliary atresia. Infant biliary atresia is a rare pediatric liver disease with severe medical complications4,5,6,7,8,9,10, however the pathogenesis and etiology of biliary atresia are largely unknown4. Patients with biliary atresia die within two years after birth unless surgical intervention (Kasai procedure) is performed5. Subsequently, these patients require extensive clinical management and often liver transplantation 6. Many theories of biliary atresia etiopathogenesis have been proposed, such as viral infection, congenital malformation, autoimmune disease, and toxic insult. However, the contribution of each to the development of biliary atresia remains inconclusive7,8,9,10.
Unlike infants that suffer pathological biliary atresia, sea lamprey undergo developmentally programmed biliary atresia without extensive necroinflammation, fibrosis or cirrhosis10. The animals may suffer transient cholestasis during this process10, but adapt to this developmental condition via de novo synthesis and secretion of bile salts in the intestine after developmental biliary atresia, in addition to known mechanisms such as reduction of bile salt synthesis in liver11. This developmental process in sea lamprey provides the only known opportunity to examine the progression of biliary atresia.
A newly-developed method called “CLARITY” enables high-resolution imaging in complex mammalian nervous systems by transforming intact tissue into an optically transparent nanoporous hydrogel12. Using sea lamprey liver and a modified CLARITY protocol, intact-tissue imaging of biliary degeneration can be documented throughout liver metamorphosis.
1. Solution Preparation
2. Tissue Preparation
Several important developmental events occur in the hepatobiliary system during sea lamprey metamorphosis. The bile duct and the gall bladder undergo apoptosis and degenerate (Figure 1). Combining the modified clarification method and staining with liver cell marker cytokeratin 19 (CK19, present in both cholangiocytes and hepatocytes before and after metamorphosis13) and anti-apoptotic marker Bcl2 using confocal microscopy, the entire biliary system was captured along the Z-axis (Figur...
This protocol is modified from a new method called “CLARITY”12, which crosslinks intact tissue with polyacrylamide to form a nanoporous hydrogel, and then strips away the plasma membrane of the tissue to achieve optical transparency and macromolecular permeability. “CLARITY” allows intact-tissue imaging of long-range projection and local circuit wiring in the nervous system. This new method can be used to visualize the entire biliary system in sea lamprey liver during metamorphosis. It ...
The authors have nothing to disclose.
The authors acknowledge the contribution of Hammond Bay Biological Station, Great Lakes Science Center, U.S. Geological Survey. We also thank Dr. Melinda Frame at the Center for Advanced Microscopy at Michigan State University for her technical support in laser scanning confocal microscopy. This study is supported by grants from the Great Lakes Fishery Commission to YWCD and WML.
Name | Company | Catalog Number | Comments |
40% acrylamide | Bio-Rad | 161-0140 | |
2% bis-acrylamide | Bio-Rad | 161-0142 | |
TEMED | Bio-Rad | 161-0800 | |
ammonium persulfate | Sigma | A3678-25G | |
boric acid | Sigma | B7901-1KG | |
saponin | Sigma | 47036 | |
sodium dodecyl sulfate | Sigma | L337-500G | |
sodium phosphate (monobasic) | Sigma | 04269-1KG | |
sodium phosphate (dibasic) | Sigma | S5136-1KG | |
Triton X-100 | Sigma | X100-500ML | |
glycerol | Sigma | G9012-500ML | |
16% paraformaldehyde | Electron Microscopy Sciences | 15710-S | |
NaOH pellets | EMD | SX0590-3 | |
15 ml centrifuge tubes | Any brand | ||
dissecting tools | Any brand |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved