A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This video article describes an in vitro microarray based method to determine the gene targets and binding sites for two component system response regulators.
In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough.
The ability of bacteria to survive and thrive is critically dependent on how well they are able to perceive and respond to perturbations in their environments, and this in turn is dependent on their signal transduction systems. The number of signaling systems a bacterium encodes has been called its “microbial IQ” and can be an indication of both variability of its environment and its ability to sense multiple signals and fine tune its response1. Two component signal transduction systems (TCS) are the most prevalent signaling systems used by bacteria, and they consist of a histidine kinase (HK) that senses the external signal and transmits via phosphorylation to an effector response regulator (RR)2. RRs can have a variety of output domains and thus different effector modes, but the most common response is transcriptional regulation via a DNA binding domain1. The signals sensed and the corresponding functions of the vast majority of TCSs remain unknown.
Although in vivo methods such as ChIP-chip are routinely used for determination of genomic binding sites of transcription factors3, they can only be used for bacterial two component system RRs if the activating conditions or signals are known. Often the environmental cues that activate a TCS are harder to determine than their gene targets. The in vitro microarray based assay described here can be used to effectively and rapidly determine the gene targets and predict functions of TCSs. This assay takes advantage of the fact that RRs can be phosphorylated and thus activated in vitro using small molecule donors like acetyl phosphate4.
In this method, named DAP-chip for DNA-affinity-purified-chip (Figure 1), the RR gene of interest is cloned with a His-tag in E. coli, and a subsequently purified tagged protein is allowed to bind to sheared genomic DNA. The protein-bound DNA is then enriched by affinity-purification, the enriched and input DNA are amplified, fluorescently labeled, pooled together and hybridized to a tiling array that is custom made to the organism of interest (Figure 1). Microarray experiments are subject to artifacts and therefore additional steps are employed to optimize the assay. One such step is to attempt to determine one target for the RR under study using electrophoretic mobility shift assays (EMSA) (see workflow in Figure 2). Then, following binding to genomic DNA and the DAP steps, the protein-bound and input DNA are examined by qPCR to see if the positive target is enriched in the protein-bound fraction relative to the input fraction, thus confirming optimal binding conditions for the RR (Figure 2). After array hybridization, the data are analyzed to find peaks of higher intensity signal indicating genomic loci where the protein had bound. Functions may be predicted for the RR based on the gene targets obtained. The target genomic loci are used to predict binding site motifs, which are then experimentally validated using EMSAs (Figure 2). The functional predictions and gene targets for the RR may then be extended to closely related species that encode orthologous RRs by scanning those genomes for similar binding motifs (Figure 2). The DAP-chip method can provide a wealth of information for a TCS where previously there was none. The method can also be used for any transcriptional regulator if the protein can be purified and DNA binding conditions can be determined, and for any organism of interest with a genome sequence available.
Figure 1. The DNA-affinity-purified-chip (DAP-chip) strategy7. The RR gene from the organism of interest is cloned with a carboxy-terminal His-tag into an E. coli expression strain. Purified His-tagged protein is activated by phosphorylation with acetyl phosphate, and mixed with sheared genomic DNA. An aliquot of the binding reaction is saved as input DNA, while the rest is subjected to affinity purification using Ni-NTA resin. The input and the RR-bound DNA are whole genome amplified, and labeled with Cy3 and Cy5, respectively. The labeled DNA is pooled together and hybridized to a tiling array, which is then analyzed to determine the gene targets. Figure modified and reprinted using the creative commons license from7.
Figure 2. Summary of workflow. For any purified tagged protein, begin by determining a target using EMSA. Allow protein to bind genomic DNA and then DNA-affinity-purify (DAP) and whole genome amplify (WGA) the enriched and input DNA. If a gene target is known, use qPCR to ensure that the known target is enriched in the protein-bound fraction. If no target could be determined, proceed directly to DNA labeling and array hybridization. If enrichment by qPCR could not be observed, then repeat the protein-gDNA binding and DAP-WGA steps using different protein amounts. Use array analysis to find peaks and map them to target genes. Use the upstream regions of target genes to predict binding site motifs. Validate the motifs experimentally using EMSAs. Use the motif to scan the genomes of related species encoding orthologs of the RR under study, and predict genes targeted in those species as well. Based on the gene targets obtained, the physiological function of the RR and its orthologs may be predicted. Figure modified and reprinted using the creative commons license from7.
Note: The protocol below is tailored for determination of gene targets of the RR DVU3023 from the bacterium Desulfovibrio vulgaris Hildenborough. It can be adapted to any other transcriptional regulator of interest.
1. Clone and Purify RR
2. Determine Gene Target for RR Using Electrophoretic Mobility Shift Assay (EMSA)
3. Verify Target Enrichment after Genomic DNA-protein Binding
4. DNA Labeling and Array Hybridization
5. Binding Site Motif Prediction and Validation
6. Conservation of Motif in Other Related Bacterial Species
The above method was applied to determine the global gene targets of the RRs in the model sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough7. This organism has a large number of TCSs represented by over 70 RRs, indicating the wide variety of possible signals that it senses and responds to. In vivo analyses on the functions of these signaling systems are hard to perform since their signals and thus their activating conditions are unknown. Here the DAP-chip method was used to dete...
The DAP-chip method described here was successfully used to determine the gene targets for several RRs in Desulfovibrio vulgaris Hildenborough7 of which one is shown here as a representative result. For RR DVU3023, choosing a candidate gene target was straightforward. DVU3025 is located immediately downstream of the RR gene, and the RR and target genes are conserved in several Desulfovibrio species, and additionally DVU3025 has a predicted sigma54-dependent promoter. The EMSA provides a simpl...
The authors have no conflict of interest to disclose.
We thank Amy Chen for her help in preparing for the video shoot and for demonstrating the technique. This work conducted by ENIGMA: Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.
Name | Company | Catalog Number | Comments |
Name of Material/Equipment | Company | Catalog number | Comments |
HisTrapFF column (Ni-Sepharose column) | GE Lfe Sciences, Pittsburgh, PA, USA | 17-5255-01 | |
Akta explorer (FPLC instrument) | GE Lfe Sciences, Pittsburgh, PA, USA | ||
HiPrep 26/10 Desalting column | GE Lfe Sciences, Pittsburgh, PA, USA | 17-5087-01 | |
Qiaquick Gel extraction kit | Qiagen Inc, Valencia, CA, USA | 28704 | |
Biotin-labeled oligonucleotides | Integrated DNA Technologies | N/A | |
6% polyacrylamide-0.5X TBE precast mini DNA retardation gel | Life Technologies, Grand Island, NY, USA | EC63652BOX | Alternately, you can pour your own gel. |
Nylon membrane | EMD Millipore, Billerica, MA, USA | INYC00010 | |
Trans-Blot SD Semi-dry electrophoretic transfer cell | Biorad, Hercules, CA, USA | 170-3940 | |
Extra thick blot paper, 8 x 13.5 cm | Biorad, Hercules, CA, USA | 170-3967 | |
UV crosslinker Model XL-1000 | Fisher Scientific | 11-992-89 | |
Nucleic Acid chemiluminescent detection kit (Pierce) | Thermo fisher Scientific, Rockford, IL, USA | 89880 | |
Ni-NTA agarose resin | Qiagen Inc, Valencia, CA, USA | 30210 | |
GenomePlex Whole genome amplification kit (Fragmentation buffer, library preparation buffer, library stabilization solution, library preparation enzyme, 10X amplification master mix, WGA polymerase ) | Sigma-Aldrich, St. Louis, MO, USA | WGA2-50RXN | |
Nanodrop ND-1000 | Thermo Scientific, Wilmington, DE, USA | For quantitation of DNA | |
Perfecta Sybr Green SuperMix, with ROX | Quanta biosciences | 95055-500 | Any Sybr Green PCR mix may be used |
PlateMax Ultra clear heat sealing film for qPCR | Axygen | ||
96 well clear low profile PCR microplate | Life Technologies, Grand Island, NY, USA | PCR-96-LP-AB-C | |
Applied Biosystems StepOne Plus Real time PCR system | Life Technologies, Grand Island, NY, USA | 4376600 | Any real time PCR system may be used |
Qiaquick PCR purification kit | Qiagen Inc, Valencia, CA, USA | 28104 | Any PCR clean up kit may be used |
Cy3/Cy5-labeled nonamers | Trilink biotechnologies, San Diego, CA, USA | N46-0001, N46-0002 | |
Klenow polymerase 50,000U/ml, 3'-5' exo- | New England Biolabs, Ipswich, MA | M0212M | |
Hybridization system | Roche-Nimblegen, Madison, WI, USA | N/A | This company no longer makes arrays or related items, so alternate sources such as Agilent or Affymetrix will need to be used, |
Custom printed microarrays and mixers | Roche-Nimblegen, Madison, WI, USA | N/A | |
Hybridization kit (2X Hybridization buffer, Hybridization component A, Alignment oligo) | Roche-Nimblegen, Madison, WI, USA | N/A | |
Wash buffer kit (10X Wash buffer I, II, III, 1 M DTT) | Roche-Nimblegen, Madison, WI, USA | N/A | |
GenePix 4200A microarray scanner | Molecular Devices, Sunnyvale CA, USA | This model has been replaced by superior ones | |
GenePix Pro microarray software | Molecular Devices, Sunnyvale CA, USA | ||
Nimblescan v.2.4, ChIP-chip analysis software | Roche-Nimblegen, Madison, WI, USA | N/A |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved