Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a procedure for generating and purifying wild type and mutant versions of the human INO80 chromatin remodeling complex. Epitope tagged versions of INO80 subunits are stably expressed in HEK293 cells, and complete complexes and complexes lacking specific sets of subunits are purified by immunoaffinity chromatography.

Abstract

INO80 chromatin remodeling complexes regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Human INO80 complexes consist of 14 protein subunits including Ino80, a SNF2-like ATPase, which serves both as the catalytic subunit and the scaffold for assembly of the complexes. Functions of the other subunits and the mechanisms by which they contribute to the INO80 complex's chromatin remodeling activity remain poorly understood, in part due to the challenge of generating INO80 subassemblies in human cells or heterologous expression systems. This JOVE protocol describes a procedure that allows purification of human INO80 chromatin remodeling subcomplexes that are lacking a subunit or a subset of subunits. N-terminally FLAG epitope tagged Ino80 cDNA are stably introduced into human embryonic kidney (HEK) 293 cell lines using Flp-mediated recombination. In the event that a subset of subunits of the INO80 complex is to be deleted, one expresses instead mutant Ino80 proteins that lack the platform needed for assembly of those subunits. In the event an individual subunit is to be depleted, one transfects siRNAs targeting this subunit into an HEK 293 cell line stably expressing FLAG tagged Ino80 ATPase. Nuclear extracts are prepared, and FLAG immunoprecipitation is performed to enrich protein fractions containing Ino80 derivatives. The compositions of purified INO80 subcomplexes can then be analyzed using methods such as immunoblotting, silver staining, and mass spectrometry. The INO80 and INO80 subcomplexes generated according to this protocol can be further analyzed using various biochemical assays, which are described in the accompanying JOVE protocol. The methods described here can be adapted for studies of the structural and functional properties of any mammalian multi-subunit chromatin remodeling and modifying complexes.

Introduction

Evolutionarily conserved SNF2 family chromatin remodeling complexes are key regulators of chromatin organization and DNA accessibility1. These remodeling complexes always include a central SNF2-like ATPase subunit, which, in some cases, assembles with various accessory proteins and forms multi-subunit macro-molecular assemblies. To study the molecular details of the ATP-dependent chromatin remodeling process, it is important to understand the contributions of given subsets of subunits and/or domain structures to activities of the complexes. Such analyses require the ability to generate highly purified mutant complexes that lack particular protein subunits o....

Protocol

1. Generation and Culture of HEK293 Stable Cell Lines Expressing Full Length or Mutant Versions of FLAG Epitope-tagged Ino80 or Other INO80 Complex Subunits

  1. Clone cDNA encoding full length or mutant human Ino80 ATPase or another INO80 subunit into the mammalian expression vector pcDNA5/FRT with an in-frame, N terminal FLAG epitope tag.
  2. Confirm the sequence of the inserted cDNAs by DNA sequencing before proceeding.
  3. To perform the transfection, grow Flp-In HEK293 cells in 10 cm tissue cultur.......

Representative Results

Figure 1 shows a flow chart summarizing the procedures used to generate, purify, and characterize human INO80 ATP-dependent chromatin remodeling complexes.

As illustrated in Figures 2 and 3, these procedures enable the generation of both wild type INO80 and INO80 subcomplexes that lack various subunits, thereby enabling subsequent biochemical analyses of the contribution of these missing subunits to INO80's enzymatic activities. Fi.......

Discussion

Structural and functional studies of multi-subunit mammalian chromatin remodeling complexes from higher eukaryotes have been hampered by the difficulty of preparing biochemically useful amounts of such complexes containing mutant subunits or lacking certain subunits altogether. There are a number of technical hurdles: First, genetic manipulation in mammalian cells has been technically challenging and time-consuming. Unlike yeast cells, whose genome can be readily edited and targeted using recombineering techniques, the m.......

Acknowledgements

Work in the authors' laboratory is supported by a grant from the National Institute of General Medical Sciences (GM41628) and by a grant to the Stowers Institute for Medical Research from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

....

Materials

NameCompanyCatalog NumberComments
Name of Reagent/MaterialCompanyCatalog NumberComments
Dulbecco's Modified Eagle MediumCellgro10-013-CV
Glutamax-I (stablized glutamine)Life Technologies35050-079
Fetal Bovine SerumSAFC12176C
FuGENE6 transfection reagent  PromegaE2312
Hygromycin B, sterile in PBSAG ScientificH-1012-PBS
pcDNA5/FRT vectorLife TechnologiesV6010-20
Flp-In HEK293 cells Life TechnologiesR780-07
pOG44 Flp-Recombinase Expression VectorLife TechnologiesV600520
EZview  Red ANTI-FLAG  M2 Affinity Gel SigmaF2426
calf serumSAFC12138C
TARGETplus SMARTsiRNA poolDharmacon / Thermo Scientificvarious
5x siRNA resuspension buffer Dharmacon / Thermo Scientific#B-002000-UB-100
Lipofectamine RNAiMAX Life Technologies13778
Opti-MEM Reduced Serum Medium Life Technologies51985-091
PBS Cellgro45000VWR
TrypLE (trypsin)Life Technologies12604
1x FLAG PeptideSigmaF3290
Micro Bio-Spin Chromatography ColumnBio-Rad737-5021
Amicon Ultra Centrifugal Filter Device (50k MWCO)AmiconUFC805024 Fisher Scientific
Zeba Desalting Columns Thermo Scientific89882
Anti-FLAG M2 antibody, mouseSigmaF3165
Anti-FLAG M2 antibody, rabbitSigmaF7425
Protease Inhibitor CocktailSigmaP8340
benzonase Novagen70664
EquipmentCompany
Wheaton Dounce Tissue GrindersWheaton06-435C 
JS-4.2 rotor in a J6 centrifuge Beckman-Coulter339080
JA-17 rotorBeckman-Coulter369691
10 ml polycarbonate tubes Beckman-Coulter355630
70 ml polycarbonate bottles Beckman-Coulter355655
Type 45 Ti rotorBeckman-Coulter339160
Type 70.1 Ti rotor Beckman-Coulter342184
BD Clay Adams Nutator MixerBD Diagnostics15172-203 VWR
Glas-Col Tube/Vial RotatorGlas-Col099A RD4512
PCR thermal cycler PTC 200MJ ResearchPTC 200
roller bottle incubatorBellco biotechnology353348
Immobilon-FL Transfer Membrane 7 x 8.4MilliporeIPFL07810
lubricated 1.5ml microcentrifuge tubes Costar3207

References

  1. Clapier, C. R., Cairns, B. R. The biology of chromatin remodeling complexes, Annual Review of Biochemistry. 78, 273-304 (2009).
  2. Szerlong, H., Hinada, K., Viswanathan, R., Erdjument-Bromage, H., Tempst, P., Cairns, B. R.

Explore More Articles

INO80 Chromatin Remodeling ComplexNucleosome DynamicsDNA AccessibilityATP dependent Nucleosome RemodelingIno80 ATPaseFLAG tagged Ino80HEK 293 CellsSiRNA DepletionFLAG ImmunoprecipitationSubcomplexesMass SpectrometryChromatin Remodeling Assays

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved