A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article reports on a detailed method for the dynamic measurement and quantification of blood flow velocity within individual blood vessels of the mouse liver vasculature using intravital microscopy imaging in combination with a specific methodology for image acquisition and analysis.
Intravital microscopy (IVM) is a powerful optical imaging technique that has made possible the visualization, monitoring and quantification of various biological events in real time and in live animals. This technology has greatly advanced our understanding of physiological processes and pathogen-mediated phenomena in specific organs.
In this study, IVM is applied to the mouse liver and protocols are designed to image in vivo the circulatory system of the liver and measure red blood cell (RBC) velocity in individual hepatic vessels. To visualize the different vessel subtypes that characterize the hepatic organ and perform blood flow speed measurements, C57Bl/6 mice are intravenously injected with a fluorescent plasma reagent that labels the liver-associated vasculature. IVM enables in vivo, real time, measurement of RBC velocity in a specific vessel of interest. Establishing this methodology will make it possible to investigate liver hemodynamics under physiological and pathological conditions. Ultimately, this imaging-based methodology will be important for studying the influence of L. donovani infection on hepatic hemodynamics.
This method can be applied to other infectious models and mouse organs and might be further extended to pre-clinical testing of a drug’s effect on inflammation by quantifying its effect on blood flow.
Organ-specific hemodynamics are important physiological features of any mammalian organ. Abnormalities in blood flow may be the consequence of inflammation and a sign of organ dysfunction1. Thus, blood flow organization, structure and function appear as critical parameters for analysis under physiological and pathological conditions. The techniques that have been commonly used for analyzing blood flow in a specific organ contain several limitations, including the resolution limit of the technique itself (e.g. Doppler imaging of blood flow), the capacity for measurement of absolute blood flow only (volume of blood per unit serving an organ) (e.g. Optical Coherence tomography) and the measurement of average changes in speed in a large and heterogeneous population of blood vessels2,3. The liver’s circulatory system links different vessel subtypes that are heterogeneous in their size, structure and function. In this study, intravital microscopy (IVM) imaging technology is applied to evaluate liver hemodynamics in vivo, in real time, at high resolution and in parallel to uncover the characteristics of the individual blood vessels that comprise the hepatic organ. The recent development of this powerful optical imaging technique allows the researcher to collect dynamic data on living animals at a high spatial and temporal resolution. By allowing the direct visualization and real time monitoring of specific and rapid biological processes in vivo, IVM provides a unique opportunity to the researcher to image individual blood vessels, and measure and quantify the velocity of single red blood cells (RBC) within a specifically selected hepatic vessel.
In this study, we have implemented the IVM technique in the mouse liver to investigate the influence of mouse infection by the hepatotropic Leishmania parasite on liver hemodynamics. L. donovani is the agent responsible for visceral leishmaniasis, a severe disease characterized by acute-on-chronic inflammatory responses and a pathology that is present in multiple organs, including the spleen and the liver. In an experimental mouse model of visceral leishmaniasis, the liver infection is self-resolving whereas the splenic infection is progressive4. These outcomes of Leishmania infection with respect to the individual organs are still not completely understood. Investigation of liver and spleen hemodynamics under pathological conditions will shed new light on host-parasite interactions and disease pathogenesis.
Our experimental model system is based on exposing and imaging the liver of an anesthetized mouse that received intravenous injection of specific fluorescent dyes for the labeling of the hepatic intravasculature. The liver is a favorable organ for intra-vital microscopy. After performing a small incision in the abdomen, the liver is gently externalized and placed on wet gauze, then on a coverslip with the goal of reducing any motion artifacts due to heartbeat and respiration. The liver is then placed within the view of a microscope lens. As compared to the spleen and lymph node which require the use of two photon microscopy for IVM studies, the advantage of the liver lies in its homogenous 3D architecture/anatomy that allows for the use of a conventional confocal microscope, with a maximum penetration depth of approximately 50 μm, for intravital microscopy imaging5-8.
This study describes two independent imaging methods for the quantitative measurement of RBC velocity and blood flow speed in individual blood vessels. In the first method, liver blood flow is acquired using a xy bi-dimensional mode over time. The resulting xyt data are analyzed using the MtrackJ plugin in the free ImageJ software, which allows for the tracking of individual RBCs over time. In the second method, a single blood vessel is selected and its corresponding blood flow is analyzed using the line scanning fast acquisition mode of the confocal laser-scanning microscope. The vessel of interest is scanned at high frequency along its central axis through an axial line. The blood flow velocity is then quantified based on the difference in contrast between unlabeled dark erythrocytes and fluorescently labeled plasma. The fluorescence intensities of RBCs and plasma acquired along the line scan are plotted against time to obtain streaks, the angles of which are proportional to the velocities of an individual RBC.
The goal of this article is to provide a simple and reproducible method for imaging and measuring blood flow velocity within individual blood vessels of the liver and to make available the basic tools for the successful performance of mouse surgery, IVM and quantitative analyses of the velocity of individual RBCs. This approach will allow researchers to gain new insights into blood velocity under pathological conditions.
Ethics statement: All the animal studies were performed in accordance with guidelines and protocols that were approved by the Institutional Animal Care and Use Committee of the Aix-Marseille Université, France. Female C57Bl/6 mice at 8 - 10 weeks old were commercially obtained and handled according to the rules of Décret N° 8 87–848, October 19, 1987, Paris. All the experiments using L. donovani LD1S parasites were conducted in accordance with biosafety regulations from the French and European Union legislation.
1. Mouse Infection with L. donovani Promastigote Parasites
2. Surgical Procedures
3. Intravital Microscopy Imaging of the Liver Architecture
4. Intravital Microscopy Imaging of the Liver for Blood Flow Speed Measurement
5. Quantitative Analysis of RBC Velocity Using the xyt Images (Method 1)
6. Quantitative Analysis of RBC Velocity Using the xt Line Images (Method 2)
The specific architectural organization of the sinusoids in the liver can be visualized based on the autofluorescent property of this organ (Figure 1, panel B and C, green), the intraperitoneal injection of Hoechst for the labeling of hepatocyte nuclei (Figure 1B, blue) and the intravenous injection of fluorescent BSA for the staining of the hepatic circulatory system (Figure 1C, red). The liver is composed of several different vessel subtypes with different functions an...
The recent development of intravital microscopy of the mouse liver opens up new possibilities for the investigation of physiological response to infection in vivo and in real time5,9,10. Organ blood flow is a critical physiological parameter that is often altered in many diseases. However, the status of liver hemodynamics under physiological and infectious conditions remains a poorly explored area. In this study, IVM-based methods, which were previously adapted for the study of the spleen an...
The authors have nothing to disclose.
This research was supported by the INSERM, the University of Aix-Marseille and a Career Development award from HFSPO obtained by CL Forestier.
Name | Company | Catalog Number | Comments |
Hoechst 33342 | Sigma Aldrich | B2261 | |
BSA-Alexa 647 | lifetechnologies | A34785 | |
Dextran-FITC 500 mol wt | SIGMA | 46947 | |
Ketamine | PanPharma | 20434 | |
Xylazine | Bayer | KP07KEU | |
Vetedine | Pharma Animal | 6869029 | |
Cyanoacrylate liquid | Cyanolit | 5833300005 | |
Coverslip frame: Membrane slide for microdissection part N°: 5013 | Molecular machines | 50103 | |
Coverslip DiaPath 24x60 ep: 1.6 mm | DiaPath | 61061 | |
Confocal laser scanning microscope | Leica | TCS-SP5 | |
LAS-AF viewer | Leica software | Version 3.1.0 buid 8587 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved