A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Prion-like propagation of protein aggregates has recently emerged as being implicated in many neurodegenerative diseases. The goal of this protocol is to describe, how to use the nematode C. elegans as a model system to monitor protein spreading and to investigate prion-like phenomena.
Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans.
Many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and transmissible spongiform encephalopathies (TSEs), are associated with aggregation-prone proteins and are hence collectively known as protein misfolding disorders (PMDs). TSEs or prion diseases constitute a unique class of PMDs in that they can be infectious in both humans and animals1. At the molecular level, prions replicate by recruiting and converting monomeric α-helix-rich host-encoded cellular PrP (PrPC) into the pathological β-sheet-rich PrPSc conformation2,3. Self-propagating protein aggregates have been also identified in fungi, which share important characteristics with mammalian prions4,5. Additionally, mammalian prions are capable of moving from cell-to-cell and infect naïve cells6,7.
While PMDs other than TSEs are not infectious, they share a common pathogenic principle with prion diseases8,9. Although the proteins linked to each of the PMDs are not related in structure or function, they all form aggregates via a crystallization-like process called nucleated or seeded polymerization; moreover proteinaceous seeds grow by recruiting their soluble isoforms2,10,11. The efficiency to self-propagate varies in vivo, depending on the intrinsic properties of the protein, which together with additional cellular factors such as molecular chaperones ultimately determine rates of aggregate nucleation, seeding, fragmentation and spreading12-15. Hence, there must exist a fine balance among these factors that allows efficient propagation of protein aggregation. This might also explain why only some amyloidogenic aggregates harbor the characteristics of a prion, and thus not all PMDs are infectious. Prions seem to represent ‘top-performers’ of a wide spectrum of self-replicating proteinaceous aggregates, which makes them a powerful tool to study PMDs8,13.
Intriguingly, the toxicity associated with disease-related aggregates often has a non cell autonomous component16,17. This means that they affect neighboring cells that do not express the corresponding gene, in contrast to a strictly cell autonomous effect, which implies that only the cells expressing the gene exhibit the specific phenotype. This was compellingly demonstrated by tissue-specific expression or knock down of the respective proteins in numerous models of neurodegenerative diseases18-26. Various mechanisms have been suggested as a basis for this non-cell autonomous toxicity in PMDs, including diminished nutrient supply, imbalance in neuronal signaling, glutamate excitotoxicity, and neuroinflammation16,27,28. In addition, a prion-like movement of disease-linked aggregates between cells might contribute to this aspect29,30. Increasing evidence suggests that protein inclusions other than prions can transmit from cell-to-cell, which may explain the characteristic spreading of pathology observed in many PMDs30-36. However, it has yet to be determined whether there is a clear causal link between intercellular movement of disease proteins and the toxic effect on neighboring cells. Therefore, a better understanding of the cellular pathways that underlie cell-to-cell transmission and non cell autonomous toxicity is necessary and essential for the development of novel therapeutics. However, many aspects of prion-like spreading and cellular factors that influence cell-to-cell transmission of misfolded proteins in metazoans are not well understood, in particular at the organismal level.
The nematode Caenorhabditis elegans has several advantages that provide the potential to discover new facets of prion-like spreading in metazoans17. It is transparent, allowing for in vivo tracking of fluorescently tagged proteins in the living organism. Furthermore, many cellular and physiological processes affected by disease are conserved from worms to human, and C. elegans is also amenable to a wide variety of genetic manipulations and molecular and biochemical analyses37-39. Exactly 959 somatic cells make up the adult hermaphrodite with a simple body plan that still has several distinct tissue types, including muscle, neurons and intestine.
To establish a new prion model in C. elegans, we chose to exogenously express the well characterized glutamine/asparagine (Q/N)-rich prion domain NM of the cytosolic yeast prion protein Sup35, since there are no known endogenous prion proteins in worms4,40. Yeast prions have been invaluable in elucidating basic mechanisms of prion replication41-44. Furthermore, NM is the first cytosolic prion-like protein that has been shown to recapitulate the full life cycle of a prion in mammalian cell culture45,46. Likewise, when expressed in C. elegans, the Sup35 prion domain adopted remarkably well to the different requirements for propagation in metazoan cells compared to yeast cells and exhibited key features of prion biology40. NM aggregation was associated with a profound toxic phenotype, including the disruption of mitochondrial integrity and appearance of various autophagy related vesicles on the cellular level, as well as embryonic and larval arrest, developmental delay, and a widespread disturbance of the protein folding environment on the organismal level. Strikingly, the prion domain exhibits cell autonomous and non cell autonomous toxicity, affecting neighboring tissues in which the transgene was not expressed. Furthermore, the vesicular transport of the prion domain within and between cells is monitored real time in vivo40.
Here we describe how to examine prion-like dissemination in C. elegans. We will explain how to monitor the intra- and intercellular transport of vesicles containing the prion domain using time-lapse fluorescence microscopy. We will emphasize the use of tissue-specific folding sensors and ubiquitously expressed stress reporters to evaluate cell autonomous and non cell autonomous effects on cellular fitness. Finally, we will describe the procedure of a recently performed genome wide RNA interference (RNAi) screen to identify new modifiers of prion-induced toxicity. In combination, these methods can help to tease apart genetic pathways involved in the intercellular movement of proteins and their non cell autonomous toxicity.
1. Monitoring Transcellular Spreading of Prion-like Proteins By In Vivo Time-lapse Imaging
NOTE: Grow C. elegans wild-type (WT) (N2) and transgenic lines according to standard methods and carefully control the cultivation temperature47.
2. Using Folding Sensors and Stress Reporters to Investigate Cell Autonomous and Non cell Autonomous Affects on Proteostasis and Toxicity
3. Genome-wide Screen for Suppression of Prion-induced Toxicity in C. elegans
Figure 4. Schematic representation of the RNAi screening protocol. See protocol section 3 for a detailed description of the individual steps.
4. Confirmation of Preliminary Screen Hits
Monitoring intercellular spreading of prion-like proteins by in vivo time-lapse imaging
Transgenic C. elegans lines expressing the prion domain are particularly well suited for the analysis of certain aspects of prion-like proteins, e.g., cell-to-cell transmission and non cell autonomous toxicity. The transparency of the animals enables tracking of fluorescently tagged proteins from within the living organism at ever...
The methods described here help to illustrate spreading and the complex cell autonomous and non cell autonomous toxicity of prion-like proteins. We recently discovered that an aggregation-prone cytosolic prion domain is taken up into membrane-bound vesicles in an autophagy related process. A specific subset of these vesicles transports the prion domain within and between cells and tissues40. The key to monitor their movement in the living animal is that the protein has to be tagged with mRFP, because only mRFP...
The authors declare no competing financial interests.
We thank Cindy Voisine and Yoko Shibata for helpful discussion and critical comments on the manuscript. We acknowledge the High Throughput Analysis Laboratory (HTAL) and the Biological Imaging Facility (BIF) at Northwestern University for their assistance. This work was funded by grants from the National Institutes of Health (NIGMS, NIA, NINDS), the Ellison Medical Foundation, and the Daniel F. and Ada L. Rice Foundation (to R.I.M.). C.I.N.-K. was supported by the Deutsche Forschungsgemeinschaft (KR 3726/1-1).
Name | Company | Catalog Number | Comments |
Reagent | |||
Nanosphere size standards 100 nm | ThermoScientific | 3100A | |
Levamisole | Sigma | L-9756 | |
IPTG | Sigma | 15502-10G | |
Ahringer RNAi library | Source BioScience LifeSciences | http://www.lifesciences.sourcebioscience .com/clone-products/non-mammalian/c-elegans/c-elegans-rnai-library/ | |
Equipment | |||
Sorvall Legend XTR Refrigerated Centrifuge, 120VAC | ThermoScientific | 75004521 | http://www.coleparmer.com/Product/Thermo_Scientific_Sorvall_Legend_ XTR_Refrigerated_Centrifuge_120 VAC/EW-17707-60 |
96 pin replicator | Scionomix | http://www.scinomix.com/all-products/96-pin-replicator/ | |
HiGro high-capacity, incubating shaker | Digilab | http://www.digilabglobal.com/higro | |
Multidrop Combi Reagent Dispenser | Titertrek | http://groups.molbiosci.northwestern.edu/hta/titertek.htm | |
Biomek FX AP96 Automated Workstation | Beckman Coulter | http://groups.molbiosci.northwestern.edu/hta/biomek_multi.htm | |
Innova44 shaker | New Brunswick | http://www.eppendorf.com/int///index.php?sitemap=2.3&pb=d78efbc05310ec 04&action=products&contentid=1& catalognode=83389 | |
M205 FA | Leica | http://www.leica-microsystems.com/de/produkte/stereomikroskope-makroskope/fluoreszenz/details/product/leica-m205-fa/ | |
ORCA-R2 C10600-10BDigital CCD camera | Hamamatsu | http://www.hamamatsu.com/jp/en/community/life_science_camera/product/search/C10600-10B/index.html | |
Spinning Disc AF Confocal Microscope | Leica | http://www.leica-microsystems.com/products/light-microscopes/life-science-research/fluorescence-microscopes/details/product/leica-sd-af/ | |
Falcon 4M60 camera | Teledyne Dalsa | http://www.teledynedalsa.com/imaging/products/cameras/area-scan/falcon/PT-41-04M60/ | |
Software | |||
MetaMorph Microscopy Automation & Image Analysis Software | Molecular Devices | http://www.moleculardevices.com/products/software/meta-imaging-series/metamorph.html | |
Hamamatsu SimplePCI Image Analysis Software | Meyer Instruments | http://meyerinst.com/imaging-software/hamamatsu/index.htm | |
ImageJ | NIH | http://rsbweb.nih.gov/ij/download.html | |
wrMTrck plugin for ImageJ | http://www.phage.dk/plugins/wrmtrck.html | ||
C. elegans strains | |||
N2 (WT) | Caenorhabditis Genetics Center (CGC) | http://www.cgc.cbs.umn.edu/strain.php?id=10570 | |
AM815 rmIs323[myo-3p::sup35(r2e2)::rfp] | Morimoto lab | available from our laboratory | |
See table 1 for a source for folding sensor and stress reporter strains |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved