A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Herein, we describe a colorimetric assay to detect the presence of reducing sugars during bacterial spore germination.
The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.
Endospores are metabolically dormant forms of bacteria that allow bacteria to persist in unfavorable environments. In many spore-forming bacteria, spore formation is induced by nutrient deprivation but this process can be controlled by changes to pH, exposure to oxygen or other stresses1. While in their metabolically dormant spore form, bacteria resist UV radiation, desiccation, higher temperatures, and freezing2. Most of the knowledge on the sporulation process comes from studies in the model organism, Bacillus subtilis. The sporulation process begins with DNA replication and the formation of an axial filament3,4. An asymmetric septum then divides the cell into two unequally sized compartments. The larger compartment, the mother cell, engulfs the smaller compartment, the forespore. Both the mother cell and forespore coordinate gene expression to mature the spore and the mother cell eventually lyses, releasing the dormant spore into the surrounding environment1.
The spore structure and composition is conserved across many bacterial species. The spore core has a lower water content than the vegetative cell and is rich with dipicolinic acid (DPA)1,2. During spore formation, DPA is pumped into the spore core in exchange for water. Surrounding the core is an inner spore membrane where, in most spore forming bacteria, the receptors which recognize the small molecules that stimulate germination (germinants) are located2. Located just outside the spore's inner membrane is a layer of cell wall peptidoglycan. A specialized peptidoglycan layer (cortex) surrounds the cell wall peptidoglycan and is composed of many of the same components as cell wall peptidoglycan [alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM)]. However, approximately 50% of the NAM residues in the cortex have been converted to muramic-δ-lactam5,6. During spore germination, these muramic-δ-lactam residues are recognized by the spore cortex lytic enzymes (SCLEs), thus allowing the cortex to be degraded (a process essential to complete germination) but not the cell wall. Surrounding the cortex is an outer membrane and several layers of coat proteins 2.
Controlling the process of germination is critically important for spore-forming bacteria. Germination is initiated when germinant receptors interact with their respective germinants2. In many spore-forming bacteria, these germinants are amino acids, sugars, nucleotides, ions or combinations thereof2. C. difficile spore germination is initiated by combinations of certain bile acids, [e.g., taurocholic acid (TA)] and amino acids (e.g., glycine)7-10. Though there are differences between the C. difficile germination pathway and the pathways studied in other spore-forming bacteria, such as B. subtilis, common to all is the absolute requirement to degrade the spore cortex to allow a vegetative cell to grow from the germinated spore2,8. Cortex degradation can be accomplished by the SCLEs CwlJ/SleB (as found in B. subtilis) or SleC (as found in many Clostridia). Cortex hydrolysis reduces the constraint on the cell wall and the spore. This allows for full core rehydration, a necessary step in reactivating many of the proteins necessary for cellular metabolism 2.
When spores germinate, the dormant spore changes from a phase-bright state to a phase-dark state and this process can be measured by a change in optical density (OD) at 600 nm11. A previous report suggests that much of this change in OD is due to the release of DPA from the spore12. During our recent study, we sought to compare the timing of C. difficile spore germination and monitored the release of DPA and cortex fragments9. For this study it was critical to monitor the release of cortex fragments as they began to be released by germinating spores.
The colorimetric assay used here was based upon a method for detecting sugars with reducing ends developed Ghuysen et al.13. Because others have described protocols for the detection of reducing sugars14 or have modified those protocols15, the literature on this subject can be confusing. Here, we detail a step-by-step method for the colorimetric detection of reducing sugars liberated from germinating C. difficile spores. Though this study uses C. difficile spores, the reducing sugars released during the germination of spores from other spore-forming bacteria are able to be detected with this protocol9,16,17.
1. Generating Samples
2. Measuring Cortex Fragments
3. Color Reagent
4. Colorimetric Reaction
Table 1 shows typical results using NAG standards. Data are used to generate a standard curve. Table 2 shows typical results from a germination assay in germination buffer supplemented with 100 mM glycine and 10 mM TA (germination-promoting conditions) or 100 mM glycine only (non-germinating conditions). In the absence of TA, C. difficile spores do not germinate and there is little change in the presence of cortex fragments in the solution. Howev...
Upon stimulation, spores undergoing the process of germination lose their resistance properties without the need for macromolecular synthesis. When spore germination is triggered, the spore core releases DPA in exchange for water2. Due to the high DPA content of the dormant spore, the spore core is under intense osmotic pressure and the specialized peptidoglycan, cortex, helps prevent the core from swelling by acting, presumably, as a barrier to expansion2.
The method des...
The authors have nothing to disclose.
The Project described is supported by Award Number 5R01AI116895 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.
Name | Company | Catalog Number | Comments |
2.0 ml screw cap tube | USA scientific | 1420-3700 | |
p1000 Eppendorf pipet | Eppendorf | ||
p200 Eppendorf pipet | Eppendorf | ||
p20 Eppendorf pipet | Eppendorf | ||
100 - 1,250 μl pipet tips | VWR | 89079-486 | |
1 - 200 μll pipet tips | VWR | 89079-458 | |
N-acetyl-D-glucosamine | Sigma | A3286-25G | |
Hydrochloric Acid - 10 N | BDH-Aristar | BDH3032-3.8LP | |
Acetic Anhydride | Alfa Aesar | L04295 | |
Sodium Bicarbonate | BDH | BDH0280-500G | |
Potassium Tetraborate tetrahydrate | Alfa Aesar | 39435 | |
Sodium Hydroxide | BDH | BDH8019-500G | |
4-(Dimethylamino)benzaldehyde | Sigma | 156477-100G | |
Saturated Phenol | Fisher | BP1750-400 | |
2-Mercaptoethanol | Aldrich | M6250-100ML | |
SpectraMax M3 | Molecular Devices | ||
Acetic Acid, Glacial | BDH | BDH3098-3.8LP | |
Heated, Circulating Water Bath | VWR Scientific | Model 1136 | |
Microtest 96 | Falcon | 353072 | 96 well clear tissue culture plates |
Culture tubes | VWR | 89000-506 | |
Lyophilizer | |||
Heat Blocks | |||
Vortex Machine |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved