A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe sensitive, gel-based discontinuous assays to examine the kinetics of lagging-strand initiation using the replication proteins of bacteriophage T7.
Here we provide protocols for the kinetic examination of lagging-strand DNA synthesis in vitro by the replication proteins of bacteriophage T7. The T7 replisome is one of the simplest replication systems known, composed of only four proteins, which is an attractive feature for biochemical experiments. Special emphasis is placed on the synthesis of ribonucleotide primers by the T7 primase-helicase, which are used by DNA polymerase to initiate DNA synthesis. Because the mechanisms of DNA replication are conserved across evolution, these protocols should be applicable, or useful as a conceptual springboard, to investigators using other model systems. The protocols described here are highly sensitive and an experienced investigator can perform these experiments and obtain data for analysis in about a day. The only specialized piece of equipment required is a rapid-quench flow instrument, but this piece of equipment is relatively common and available from various commercial sources. The major drawbacks of these assays, however, include the use of radioactivity and the relative low throughput.
The replication of DNA is a conserved feature of all cellular life. While the identity and number of replication components vary widely, the general mechanisms are shared across evolution1. Here, we describe gel-based, discontinuous kinetic experiments, using radioactive substrates, aimed at understanding the kinetics of lagging-strand DNA synthesis in vitro by components of the T7 replisome. The replication machinery of bacteriophage T7 is very simple, consisting of only four proteins (the DNA polymerase, gp5, and its processivity factor, E. coli thioredoxin, the bifunctional primase-helicase gp4, and the single-stranded DNA binding protein, gp2.5)2. This feature makes it an attractive model system to study the conserved biochemical mechanisms involved in DNA replication.
Special emphasis is placed on the formation of ribonucleotide primers by T7 DNA primase, a critical step in the initiation of DNA synthesis. In addition, one can also examine the usage of these primers by T7 DNA polymerase or other replication proteins by including them in the reaction mixture. The T7 primase-helicase, gp4, catalyzes the formation of primers for DNA synthesis at specific DNA sequences called primase recognition sites, or PRS, (5'-GTC-3'). The cytosine in the PRS is cryptic, it is essential for recognition of the site, but it is not copied into the product3. The first step in primer synthesis by gp4 involves the formation of the dinucleotide pppAC, which is then extended to a trimer, and eventually to functional tetranucleotide primers pppACCC, pppACCA, or pppACAC depending on the sequence in the template4. These primers can then be used by T7 DNA polymerase to initiate DNA synthesis, which is also a gp4-assisted process5,6. In this regard, the primase domain stabilizes the extremely short tetraribonucleotides with the template, preventing their dissociation, engages DNA polymerase in a manner conducive to securing the primer/template into the polymerase active site7. These steps (RNA primer synthesis, primer handoff to polymerase, and extension) are repeated in multiple cycles to replicate the lagging strand and must be coordinated with the replication of the leading strand.
The assays described here are highly sensitive and can be performed in a moderate time frame. However, they are relatively low-throughput and great care must be exercised in the usage and disposal of radioactive materials. Depending on the speed at which the reaction proceeds, one might employ a rapid-quench instrument to attain samples at time scales amenable for meaningful analysis of reaction time courses in either the steady or the pre-steady state. Recently, we used assays described here to provide evidence of the importance of primer release from the primase domain of gp4 in the initiation of Okazaki fragments. Additionally, we found evidence of a regulatory role for the T7 single-stranded DNA binding protein, gp2.5, in promoting efficient primer formation and utilization8.
NOTE: Follow all institutional regulations regarding the safe use and disposal of radioactive material, including but not limited to, usage of personal protective equipment, such as gloves, safety glasses, lab coat, and appropriate acrylic shields.
NOTE: The standard buffer consists of 40 mM HEPES-KOH, pH 7.5, 50 mM potassium glutamate, 5 mM DTT, 0.1 mM EDTA (this buffer is pre-made at a 5x concentration) and 0.3 mM of each dNTP. T7 replication proteins are purified as described8,9,10. Single-stranded DNA containing a single T7 primase recognition site (5'-GGGTC-3', 5'-GTGTC-3', 5'-TGGTC-3') can be purchased from a variety of DNA synthesis companies (the length of the ssDNA may depend on the enzyme of choice, for T7 primase, a pentamer is the minimum template length to synthesize a full-length primer11, as the cryptic C is essential, however, if the primer is to be extended by polymerase, additional nucleotides must be present at the 3' end of the template. Reactions are initiated by the addition of a final concentration of 10 mM MgCl2 and incubated at 25 °C. Manual sampling works well for time-points of 5 seconds or greater. If time-points shorter than that are required, it is recommended to use a rapid-quench flow instrument to obtain accurate data.
1. Multiple-turnover Primer Synthesis Reaction by Manual Sampling
2. Multiple-turnover Primer Synthesis Reaction Using a Rapid-quench Instrument
3. Single-turnover Primer Synthesis Reaction
NOTE: Single-turnover primer synthesis/extension assays are carried out similarly to multiple-turnover reactions, with a few major differences: these assays follow the conversion of radiolabeled ATP into primer or extension products, however the concentration of substrates and proteins are considerably higher. In addition, in order to attain millisecond resolution to allow analysis of the primer synthesis reaction, one must utilize a rapid-quench flow machine.
4. Data Analysis
The results shown in Figure 1A were obtained as described in step 1 of the protocol, i.e., by manually sampling a primer synthesis reaction catalyzed by gp4 under multiple-turnover conditions. Here, a range of products after gel electrophoresis can be observed by using CTP labeled with 32P at the α-position in primer synthesis reactions (Figure 1A). The labeled precursor, CTP, shows the highest mobility and migrat...
The most important factor in performing these experiments is the availability of highly active purified enzyme. During our work with gp4, for example, we found that storage of the purified enzyme in buffer (20 mM potassium phosphate, pH 7.4, 0.1 mM EDTA, 1 mM DTT) containing 50% glycerol at -20 °C leads to a reduction in the specific activity of the preparation over a few months. Therefore we now flash-freeze small aliquots of purified gp4 in 25 mM Tris-HCl, pH 7.5, 50 mM NaCl, 0.1 mM EDTA, 1 mM TCEP, and 10% glycer...
The authors have nothing to disclose.
We thank C.C.R. laboratory members for comments and S. Moskowitz for figure preparation. This work was supported by National Institutes of Health Grants F32GM101761 (A.J.H.) and GM54397 (C.C.R.).
Name | Company | Catalog Number | Comments |
Tris pre-set crystals pH 7.5 | SIGMA | T4128 | |
Tris base | SIGMA | 93362 | |
L-Glutamic acid potassium salt monohydrate | SIGMA | G1501 | |
Magnesium chloride hexahydrate | Mallinckrodt Chemicals | 5958-04 | |
1,4-Dithiothreitol | J.T. Baker | F780-02 | |
Sodium Dodecyl Sulfate | MP Biomedicals | 811030 | |
(Ethylenedinitrilo) Tetraacetic acid, disodium salt, dihydrate | Mallinckrodt Chemicals | 4931-04 | |
[α-32P] CTP | PerkinElmer | BLU508H | radioactive, take protective measures |
[γ-32P] ATP | PerkinElmer | BLU502A | radioactive, take protective measures |
100 mM dATP, dCTP, dGTP, dTTP | Affymetrix | 77100 | four dNTPs part of set |
100 mM ATP and CTP | Epicentre | RN02825 | part of NTP set |
ssDNA constructs | Integrated DNA Technologies | N/A | custom sequences |
methanol | Macron Fine Chemicals | 3017-08 | |
formamide | Thermo Scientific | 17899 | |
bromophenol blue | SIGMA | B8026 | |
cylene xyanol | SIGMA | X4126 | |
acrylamide | SIGMA | A9099 | Toxic |
N,N′-Methylenebisacrylamide | SIGMA | M7279 | Toxic |
Urea | Boston Bioproducts | P-940 | |
Boric acid | Mallinckrodt Chemicals | 2549 | |
Rapid Quench-Flow Instrument | Kintek Corp. | RQF-3 | |
Kintek Explorer | Kintek Corp. | N/A | |
Kaleidagraph | Synergy Software | N/A |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved