JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Whole organ culture of the intervertebral disc (IVD) preserves the native extracellular matrix, cell phenotypes, and cellular-matrix interactions. Here we describe an IVD culture system using mouse lumbar and caudal IVDs in their functional spinal units and several applications utilizing this system.

Abstract

Intervertebral disc (IVD) degeneration is a significant contributor to low back pain. The IVD is a fibrocartilaginous joint that serves to transmit and dampen loads in the spine. The IVD consists of a proteoglycan-rich nucleus pulposus (NP) and a collagen-rich annulus fibrosis (AF) sandwiched by cartilaginous end-plates. Together with the adjacent vertebrae, the vertebrae-IVD structure forms a functional spine unit (FSU). These microstructures contain unique cell types as well as unique extracellular matrices. Whole organ culture of the FSU preserves the native extracellular matrix, cell differentiation phenotypes, and cellular-matrix interactions. Thus, organ culture techniques are particularly useful for investigating the complex biological mechanisms of the IVD. Here, we describe a high-throughput approach for culturing whole lumbar mouse FSUs that provides an ideal platform for studying disease mechanisms and therapies for the IVD. Furthermore, we describe several applications that utilize this organ culture method to conduct further studies including contrast-enhanced microCT imaging and three-dimensional high-resolution finite element modeling of the IVD.

Introduction

Low back pain (LBP) is the leading factor for global disability and lost productivity in the workplace, and Americans alone spend in excess of 50 billion dollars on LBP treatment1. Although prevalent, the etiology of LBP remains complex and multifactorial. However, intervertebral disc (IVD) degeneration is among the most significant risk factors for LBP2.

The IVD is made of three microstructures: the exterior annulus fibrosis (AF), the interior nucleus pulposus (NP), and two cartilaginous endplates that sandwich the whole structure proximally and distally3. With aging and degeneration, the IVD components change structurally, compositionally, and mechanically4. These changes include the loss of proteoglycans and hydration in the NP, decreased disc height, and deteriorated mechanical competence5. These alterations are often accompanied by cytokines that promote an inflammatory response, as well as neutrophil and dorsal root ganglion intrusion into the joint space culminating in a cascade of events that lead to LBP symptoms6.

Studying the mechanisms of IVD degeneration is challenging in humans because it is often not possible to isolate the cause of the degeneration before the occurrence of low back pain. Thus, a reductionist approach of simplifying the experimental system down to the IVD organ allows mechanistic fine-tuning of causal variables and examining their downstream effects5. The system is reduced to only the native cell population and surrounding extracellular matrix, thus enabling the direct interpretation of the effects of external stimuli on IVD degeneration. Moreover, the lower cost and scalability of murine models, as well as the large number of genetically modified animals7, allow for the rapid targeted screening of IVD degenerative mechanisms and potential therapies. Here, we describe a murine organ culture system in which IVD cellular and tissue stability is maintained over 21 days, with specific focus given to the IVDs' homeostatic, mechanical, structural, and inflammatory patterns. Using this method, we monitor the IVDs' functional changes in a stab-induced injury model8 to understand the mechanisms behind disc degeneration. Furthermore, we describe several applications of this organ culture method to conduct further studies including contrast-enhanced microCT imaging and three-dimensional high-resolution modeling of the IVD.

Protocol

All animal experiments were performed in compliance with the Washington University in St. Louis Animal Studies Committee.

1. Animals

  1. Obtain two strains of mice: 10-week old BALB/c (n = 6, BALB-M, BALB/cAnNTac) and 10-week old nuclear factor kappa-B-luciferase reporter animals (NF-κβ-luc) bred on a BALB/c background (n = 6, BALB/c-Tg(Rela-luc)31Xen).
  2. Prior to dissection, euthanize animals with CO2 overdose at a flow rate of 2.5-3 L/min for 5 min followed by an additional 2 min of dwelling time.
  3. Disinfect the outside region of the animal by bathing it in a 70% ethanol bath for 2 min before dissection.

2. Dissection

  1. Make a longitudinal vertical cut on the dorsal surface of the mouse using small dissection scissors to expose the body cavity.
  2. Make two longitudinal vertical cuts on either side of the animal's spine starting from the first lumbar vertebrae (L1) to the caudal vertebrae (C8).
  3. Using a scalpel, fine forceps, and fine dissection scissors, carefully remove the spine from L1-C8 from the animal's body cavity.
  4. Carefully remove excess soft tissues surrounding the spinal column, while ensuring to not scrape or injure the IVD on the ventral side.
  5. Further dissect the spinal column into vertebrae-disc-vertebrae functional spinal units (FSUs) at the L1/L2, L3/L4, L5/L6, C3/C4, C5/C6, and C7/C8 discs.
  6. Rinse the FSUs in Hank's balanced salt solution supplemented with 1% penicillin-streptomycin for 2 min.
  7. Randomly assign the FSUs into three groups: uncultured and untreated FSUs (Fresh), cultured but untreated FSUs (Control), and cultured and stab treated FSUs (Stab).
  8. Snap freeze the Fresh FSU samples with liquid nitrogen immediately after dissection and store in a -20 °C freezer.

3. Organ Culture Conditions

  1. Prepare 500 mL of sterile culture media of 1:1 Dulbecco's modified Eagle's medium: Nutrient Mixture F-12 (DMEM:F12) supplemented with 20% fetal bovine serum (FBS) and 1% penicillin-streptomycin.
  2. Using 10 mL serological pipettes, pipette 2 mL of culture media into each well of a 24-well culture plate.
  3. Following dissection and rinse, place each FSU into an individual well in the media-filled 24-well plate.
  4. Incubate the samples in a sterile incubator that maintains 37 °C, 5% CO2, 20% O2 and > 90% humidity.
  5. After an initial culture period of 24 h, mechanically injure the Stab group samples via needle puncture of the annulus fibrosus using a sterile 27-gauge needle as shown in Figure 1A.
  6. Change media every 48 h by preparing a new media-filled 24-well culture plate, and transfer samples from the old plate to the new using sterile tweezers. Aspirate the old media and dispose of the old culture plate in a biohazard waste bin.
  7. On the final day of culture, incubate all samples in media containing 0.75 mg/mL nitro blue tetrazolium chloride for 24 h.
  8. Afterwards, freeze all the FSUs with liquid nitrogen and store in a -20 °C freezer until ready for mechanical testing or histology (Figure 1B).

4. Longitudinal Measurements NF-κB

  1. Image the FSUs from NF-κβ-luciferase animals at 1, 5, 13, and 19 days to assess NF-κB expression.
  2. Add 10 µL of 1 mg/mL luciferin solution to each well and incubate in a sterile incubator at 37 °C for 10 min.
  3. Image the samples for bioluminescence using the imaging system with a 1 min exposure time and bin setting of 2.
  4. Concurrently, use the machine to take a photograph and overlay it with the bioluminescence image to determine the anatomical location of luminescence in the IVD.

5. Mechanical Assessment

  1. Determine the mechanical behavior of the IVDs by using displacement-controlled dynamic compression9.
  2. Using a dissection microscope, scalpel, and tweezers, remove the bony vertebral bodies of the FSU from each sample while keeping the cartilaginous endplates intact and attached to the IVD.
  3. Attach the isolated IVDs to a 1 cm x 1 cm x 0.2 cm aluminum plate using cyanoacrylate glue.
  4. Measure the disc height and width by taking an average of three measurements on the longitudinal axis of each disc using a laser micrometer. Calculate the disc height ratio by dividing the average disc height by the maximum disc width.
  5. Use the measured disc height to calculate the input strain values used in mechanical testing. Note that the average disc height was approximately 690 µm ± 39 µm.
  6. Place the samples in a phosphate buffered saline bath under the compression machine and preload the disc to 0.02 N.
  7. Cyclically compress the disc using a sinusoidal waveform at 1 Hz for 20 cycles at the 1% strain level and 5% strain level for 3 trials each and record the load and displacement values of the IVD. Allow 10 min of resting time between trials for the disc to relax and to prevent injury.
  8. Calculate the average stiffness from the loading phase of the last cycle, and calculate the loss tangent from the phase angle between load and displacement data.

6. Proteoglycan and Collagen Quantification

  1. Following mechanical testing, measure the disc wet weight by placing the isolated IVD in a pre-tared centrifuge tube and measuring the weight using an analytical balance.
  2. Digest the isolated IVDs in 250 µL papain digestion solution (0.1 M sodium acetate, 0.01 M EDTA, 0.005 M cysteine HCl, pH 6.4) overnight at 65 °C using a block heater.
  3. Centrifuge samples for 10 min at 2,000 x g and collect the supernatant fluid.
  4. Measure the proteoglycan content of the IVD by using the dimethylmethylene blue (DMMB) assay with chondroitin sulfate standards.
  5. Prepare DMMB solution (21 mg DMMB, 5 mL absolute ethanol, 2 g sodium formate in 1 L ddH2O).
  6. Pipette 30 µL of standards and samples in triplicate in a 96-well plate, along with 250 µL of DMMB solution in each well.
  7. Read the absorbance of the plate at 525 nm using a spectrophotometer.
  8. Measure the collagen content using a hydroxyproline assay kit according to manufacturer instructions.

7. Histology

  1. Fix a subset of samples in 4% paraformaldehyde for 24 h, de-calcify in 5% formic acid for 48 h, dehydrate with ethanol, and embed in paraffin.
  2. Using a microtome, section the samples sagittally at 10 µm thickness and apply sections to glass slides. Stain the sections using Safranin-O/Fast Green and DAPI.
  3. Using a light microscope, image slides at 10X magnification.

8. Contrast-enhanced microComputed Tomography (microCT)

  1. Scan a subset of samples at the 0, 2, 5, and 7-day time points using longitudinal Ioversol contrast-enhancement10, and terminal phosphomolybdic acid (PMA) contrast-enhancement at the 7 day time point.
  2. 4 h prior to microCT scan time, add 300 µL of 350 mg/mL iodine Ioversol solution to the culture media for a final concentration of approximately 50 mg/mL iodine-containing Ioversol solution and incubate in a sterile incubator at 37 °C for 4 h.
  3. Following incubation, wrap the sample in sterile gauze and place in a 1 mL microcentrifuge tube.
  4. Place samples in the microCT system and scan at 45 keVp, 177 µA, 10.5 µm voxel size, and 300 ms integration.
  5. Export data from the microCT as DICOM files and visualize using software (e.g., OsiriX).
  6. At the 7-day time point, fix samples using a 4% paraformaldehyde solution for 24 h, followed by 5% PMA solution for 3 days, and scan using the same settings as those used in step 8.4.

9. Three Dimensional Finite Element Modeling

  1. Segment the DICOM files of the IVDs using software with manual thresholding (e.g., OsiriX).
  2. Convert the NP and AF volumes of the IVD into voxel-based finite element meshes using Meshlab.
  3. Combine the microstructures of the NP and AF to form a complete IVD and apply experimentally determined boundary conditions in the finite element software.

Results

Figures 2-3 show representative results of proteoglycan distribution, NF-κB expression, stiffness, viscosity, disc height, and wet weight for cultured mouse IVDs. If cultured properly, the IVD parameters of the Control group should not be significantly different from the Fresh group. If the culture is infected or otherwise compromised, the Control group will be different from the Fresh group, especially in NF-κB expression and proteoglycan distribution (results not shown). Figures 4-5

Discussion

This protocol outlines an organ culture of the murine FSU with emphasis on monitoring the biological changes in the IVD. The successful maintenance of these cultures requires careful sterile techniques. In particular, the dissection steps 2.1-2.6 and the culture steps 3.1-3.6 require special care to ensure sterile conditions are maintained, and these steps should be performed preferably in an isolated procedure room with a HEPA airflow to minimize contaminants. Because the dissection proc...

Disclosures

The authors of this manuscript declare that they have no competing financial interests.

Acknowledgements

This work was supported by the Washington University Musculoskeletal Research Center (NIH P30 AR057235), Molecular Imaging Center (NIH P50 CA094056), Mechanobiology Training Grant (NIH 5T32EB018266), NIH R21AR069804, and NIH K01AR069116. The authors would like to thank Patrick Wong for his contributions in data collection.

Materials

NameCompanyCatalog NumberComments
96 well plateMidwest ScientificTP92096Used for biochemical assays
24 well plateMidwest ScientificTP92024Used for organ culture
25 mL pipettesMidwest ScientificTP94024Used for organ culture
10 mL pipettesMidwest ScientificTP94010Used for organ culture
5 mL pipettesMidwest ScientificTP94005Used for organ culture
500 mL bottle top filters, 22 µmMidwest ScientificTP99505Used for filter media
10 µL pipette tipsMidwest ScientificNP89140098Used for biochemical assays
200 µL pipette tipsMidwest ScientificNP89140900Used for biochemical assays
1,000 µL pipette tipsMidwest ScientificNP89140920Used for biochemical assays
DMEM/F-12Invitrogen11330032Used for culture media
Optiray 350Guebert19133341Used for contrast enhanced microCT
Fetal Bovine SerumSigmaF2442Used for culture media
Penicillin Streptomycin SigmaP4333Used for culture media
Tetrazolium Blue ChlorideSigmaT4375Used for biochemical assays
D-LuciferinSigmaL6152Used for bioluminescence imaging
Chondroitin SulfateSigmaC9819Used for biochemical assays
10% Phosphomolybdic Acid SolutionSigmaHT152Used for contrast enhanced microCT
Safranin OSigmaS8884diluted to .1% concentration (in water)
Fast Green FCFSigmaF7258.001% concentration
Papain from papaya latexSigma P3125Used for biochemical assays
DAPISigma-AldrichD9542Nucleic acid staining
Cyanoacrylate GlueLoctite234790Adhesive 
1.5 mL Microcentrifuge TubesFischer ScientificS348903Used for biochemical assays
Big Equipment
BioDentActiveLifeFor mechanical testing
Cytation 5BiotekSpectrophotometer
AxioCam503Carl Zeiss AGMicroscope
VivaCT40ScancoMicroCT
Analytical balanceDenver Instrument CompanyA-200DSAnalytical balance
Incubator HERAcell 150iThermo ScientificOrgan Culture
Dissection ScopeVistaVisionUsed during dissection
Laser MicrometerKeyenceLK-081Measuring disc height
Microcentrifuge 5810 REppendorfUsed for biochemical assays
MicrotomeLeica RM2255Used for histology
Software
Prism 7GraphPadFor statistics
MATLAB R2014aMathworksFor modeling
Osiri-LXIVPixmeoOpen Source
MeshLab v1.3.3Visual Computing Lab - ISTI - CNROpen Source
PreView/FEBio 2.3Utah MRL & Columbia MBLOpen Source
ImageJNIH
Microsoft ExcelWindows
Dissection Tools
Cohan-Vannas Spring Scissors Fine Science Tools  15000-02Or any nice pair of spring scissors
Fine Scissors - Sharp  (small)Fine Science Tools  14060-09
Fine Scissors - Sharp  (larger)Fine Science Tools  14060-11
Dumont #5 ForcepsFine Science Tools  11252-40At least 2; can also use #3 
Extra Fine Graefe Forceps, serratedFine Science Tools  11150-10At least 2
Micro-Adson Forceps, serratedWorld Precision Instruments503719-12
Micro-Adson Forceps, teethWorld Precision Instruments501244
Scalpel Handle - #3Fine Science Tools  10003-12
Scalpel Handle - #4Fine Science Tools  10004-13
Scalpel Blades - #23Fine Science Tools  10023-00
Insect Pins, size 000Fine Science Tools26000-25
27 G NeedleBD PrecisionGlide NeedlesBD305109

References

  1. Dagenais, S., Caro, J., Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 8 (1), 8-20 (2008).
  2. Urban, J., Roberts, S. Degeneration of the intervertbral disc. Arthritis Res Ther. 5 (6), 1-48 (2003).
  3. Mirza, S. K., White, A. A. Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J Clin Laser Med Surg. 13 (3), 131-142 (1995).
  4. Acaroglu, E. R., et al. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 20 (24), 2690-2701 (1995).
  5. Abraham, A. C., Liu, J. W., Tang, S. Y. Longitudinal changes in the structure and inflammatory response of the intervertebral disc due to stab injury in a murine organ culture model. J Orthop Res. 34 (8), 1431-1438 (2016).
  6. Ohtori, S., Inoue, G., Miyagi, M., Takahashi, K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 15 (6), 1347-1355 (2015).
  7. Pelle, D. W., et al. Genetic and functional studies of the intervertebral disc: A novel murine intervertebral disc model. PLoS ONE. 9 (12), (2014).
  8. Zhang, H., et al. Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine. J Neurosurg: Spine. 15 (4), 404-413 (2011).
  9. Liu, J. W., Abraham, A. C., Tang, S. Y. The high-throughput phenotyping of the viscoelastic behavior of whole mouse intervertebral discs using a novel method of dynamic mechanical testing. J Biomech. 48 (10), 2189-2194 (2015).
  10. Lin, K. H., Wu, Q., Leib, D. J., Tang, S. Y. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs. J Mech Behav Biomed Mater. 63, (2016).
  11. Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev: Immunol. 9 (11), 778-788 (2009).
  12. O’Connell, G. D., Vresilovic, E. J., Elliott, D. M. Comparison of animals used in disc research to human lumbar disc geometry. Spine. 32 (3), 328-333 (2007).
  13. Lee, C. R., et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine. 31, 515-522 (2006).
  14. Chan, S. C., Gantenbein-Ritter, B. Preparation of Intact Bovine Tail Intervertebral Discs for Organ Culture. J. Vis. Exp. (60), e3490 (2012).
  15. Holguin, N., Aguilar, R., Harland, R. A., Bomar, B. A., Silva, M. J. The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice. J Appl Physiol. 116 (12), (2014).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

In Vitro Organ CultureIntervertebral DiscMurineLow Back PainDisc DegenerationBALB c MiceTransgenic MiceLuciferase GeneFunctional Spine UnitsDMEM F 12 MediumOrgan Culture MethodDissectionSterilityContamination

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved