A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Whole organ culture of the intervertebral disc (IVD) preserves the native extracellular matrix, cell phenotypes, and cellular-matrix interactions. Here we describe an IVD culture system using mouse lumbar and caudal IVDs in their functional spinal units and several applications utilizing this system.
Intervertebral disc (IVD) degeneration is a significant contributor to low back pain. The IVD is a fibrocartilaginous joint that serves to transmit and dampen loads in the spine. The IVD consists of a proteoglycan-rich nucleus pulposus (NP) and a collagen-rich annulus fibrosis (AF) sandwiched by cartilaginous end-plates. Together with the adjacent vertebrae, the vertebrae-IVD structure forms a functional spine unit (FSU). These microstructures contain unique cell types as well as unique extracellular matrices. Whole organ culture of the FSU preserves the native extracellular matrix, cell differentiation phenotypes, and cellular-matrix interactions. Thus, organ culture techniques are particularly useful for investigating the complex biological mechanisms of the IVD. Here, we describe a high-throughput approach for culturing whole lumbar mouse FSUs that provides an ideal platform for studying disease mechanisms and therapies for the IVD. Furthermore, we describe several applications that utilize this organ culture method to conduct further studies including contrast-enhanced microCT imaging and three-dimensional high-resolution finite element modeling of the IVD.
Low back pain (LBP) is the leading factor for global disability and lost productivity in the workplace, and Americans alone spend in excess of 50 billion dollars on LBP treatment1. Although prevalent, the etiology of LBP remains complex and multifactorial. However, intervertebral disc (IVD) degeneration is among the most significant risk factors for LBP2.
The IVD is made of three microstructures: the exterior annulus fibrosis (AF), the interior nucleus pulposus (NP), and two cartilaginous endplates that sandwich the whole structure proximally and distally3. With aging and degeneration, the IVD components change structurally, compositionally, and mechanically4. These changes include the loss of proteoglycans and hydration in the NP, decreased disc height, and deteriorated mechanical competence5. These alterations are often accompanied by cytokines that promote an inflammatory response, as well as neutrophil and dorsal root ganglion intrusion into the joint space culminating in a cascade of events that lead to LBP symptoms6.
Studying the mechanisms of IVD degeneration is challenging in humans because it is often not possible to isolate the cause of the degeneration before the occurrence of low back pain. Thus, a reductionist approach of simplifying the experimental system down to the IVD organ allows mechanistic fine-tuning of causal variables and examining their downstream effects5. The system is reduced to only the native cell population and surrounding extracellular matrix, thus enabling the direct interpretation of the effects of external stimuli on IVD degeneration. Moreover, the lower cost and scalability of murine models, as well as the large number of genetically modified animals7, allow for the rapid targeted screening of IVD degenerative mechanisms and potential therapies. Here, we describe a murine organ culture system in which IVD cellular and tissue stability is maintained over 21 days, with specific focus given to the IVDs' homeostatic, mechanical, structural, and inflammatory patterns. Using this method, we monitor the IVDs' functional changes in a stab-induced injury model8 to understand the mechanisms behind disc degeneration. Furthermore, we describe several applications of this organ culture method to conduct further studies including contrast-enhanced microCT imaging and three-dimensional high-resolution modeling of the IVD.
All animal experiments were performed in compliance with the Washington University in St. Louis Animal Studies Committee.
1. Animals
2. Dissection
3. Organ Culture Conditions
4. Longitudinal Measurements NF-κB
5. Mechanical Assessment
6. Proteoglycan and Collagen Quantification
7. Histology
8. Contrast-enhanced microComputed Tomography (microCT)
9. Three Dimensional Finite Element Modeling
Figures 2-3 show representative results of proteoglycan distribution, NF-κB expression, stiffness, viscosity, disc height, and wet weight for cultured mouse IVDs. If cultured properly, the IVD parameters of the Control group should not be significantly different from the Fresh group. If the culture is infected or otherwise compromised, the Control group will be different from the Fresh group, especially in NF-κB expression and proteoglycan distribution (results not shown). Figures 4-5
This protocol outlines an organ culture of the murine FSU with emphasis on monitoring the biological changes in the IVD. The successful maintenance of these cultures requires careful sterile techniques. In particular, the dissection steps 2.1-2.6 and the culture steps 3.1-3.6 require special care to ensure sterile conditions are maintained, and these steps should be performed preferably in an isolated procedure room with a HEPA airflow to minimize contaminants. Because the dissection proc...
The authors of this manuscript declare that they have no competing financial interests.
This work was supported by the Washington University Musculoskeletal Research Center (NIH P30 AR057235), Molecular Imaging Center (NIH P50 CA094056), Mechanobiology Training Grant (NIH 5T32EB018266), NIH R21AR069804, and NIH K01AR069116. The authors would like to thank Patrick Wong for his contributions in data collection.
Name | Company | Catalog Number | Comments |
96 well plate | Midwest Scientific | TP92096 | Used for biochemical assays |
24 well plate | Midwest Scientific | TP92024 | Used for organ culture |
25 mL pipettes | Midwest Scientific | TP94024 | Used for organ culture |
10 mL pipettes | Midwest Scientific | TP94010 | Used for organ culture |
5 mL pipettes | Midwest Scientific | TP94005 | Used for organ culture |
500 mL bottle top filters, 22 µm | Midwest Scientific | TP99505 | Used for filter media |
10 µL pipette tips | Midwest Scientific | NP89140098 | Used for biochemical assays |
200 µL pipette tips | Midwest Scientific | NP89140900 | Used for biochemical assays |
1,000 µL pipette tips | Midwest Scientific | NP89140920 | Used for biochemical assays |
DMEM/F-12 | Invitrogen | 11330032 | Used for culture media |
Optiray 350 | Guebert | 19133341 | Used for contrast enhanced microCT |
Fetal Bovine Serum | Sigma | F2442 | Used for culture media |
Penicillin Streptomycin | Sigma | P4333 | Used for culture media |
Tetrazolium Blue Chloride | Sigma | T4375 | Used for biochemical assays |
D-Luciferin | Sigma | L6152 | Used for bioluminescence imaging |
Chondroitin Sulfate | Sigma | C9819 | Used for biochemical assays |
10% Phosphomolybdic Acid Solution | Sigma | HT152 | Used for contrast enhanced microCT |
Safranin O | Sigma | S8884 | diluted to .1% concentration (in water) |
Fast Green FCF | Sigma | F7258 | .001% concentration |
Papain from papaya latex | Sigma | P3125 | Used for biochemical assays |
DAPI | Sigma-Aldrich | D9542 | Nucleic acid staining |
Cyanoacrylate Glue | Loctite | 234790 | Adhesive |
1.5 mL Microcentrifuge Tubes | Fischer Scientific | S348903 | Used for biochemical assays |
Big Equipment | |||
BioDent | ActiveLife | For mechanical testing | |
Cytation 5 | Biotek | Spectrophotometer | |
AxioCam503 | Carl Zeiss AG | Microscope | |
VivaCT40 | Scanco | MicroCT | |
Analytical balance | Denver Instrument Company | A-200DS | Analytical balance |
Incubator HERAcell 150i | Thermo Scientific | Organ Culture | |
Dissection Scope | VistaVision | Used during dissection | |
Laser Micrometer | Keyence | LK-081 | Measuring disc height |
Microcentrifuge 5810 R | Eppendorf | Used for biochemical assays | |
Microtome | Leica | RM2255 | Used for histology |
Software | |||
Prism 7 | GraphPad | For statistics | |
MATLAB R2014a | Mathworks | For modeling | |
Osiri-LXIV | Pixmeo | Open Source | |
MeshLab v1.3.3 | Visual Computing Lab - ISTI - CNR | Open Source | |
PreView/FEBio 2.3 | Utah MRL & Columbia MBL | Open Source | |
ImageJ | NIH | ||
Microsoft Excel | Windows | ||
Dissection Tools | |||
Cohan-Vannas Spring Scissors | Fine Science Tools | 15000-02 | Or any nice pair of spring scissors |
Fine Scissors - Sharp (small) | Fine Science Tools | 14060-09 | |
Fine Scissors - Sharp (larger) | Fine Science Tools | 14060-11 | |
Dumont #5 Forceps | Fine Science Tools | 11252-40 | At least 2; can also use #3 |
Extra Fine Graefe Forceps, serrated | Fine Science Tools | 11150-10 | At least 2 |
Micro-Adson Forceps, serrated | World Precision Instruments | 503719-12 | |
Micro-Adson Forceps, teeth | World Precision Instruments | 501244 | |
Scalpel Handle - #3 | Fine Science Tools | 10003-12 | |
Scalpel Handle - #4 | Fine Science Tools | 10004-13 | |
Scalpel Blades - #23 | Fine Science Tools | 10023-00 | |
Insect Pins, size 000 | Fine Science Tools | 26000-25 | |
27 G Needle | BD PrecisionGlide Needles | BD305109 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved