Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Monocytes are important mediators of arteriogenesis in the context of peripheral arterial disease. Using a basement membrane-like matrix and intravital microscopy, this protocol investigates monocyte homing and tumor-related angiogenesis after monocyte injection in the femoral artery ligation murine model.

Abstract

The therapeutic goal for peripheral arterial disease and ischemic heart disease is to increase blood flow to ischemic areas caused by hemodynamic stenosis. Vascular surgery is a viable option in selected cases, but for patients without indications for surgery such as progression to rest pain, critical limb ischemia, or major disruptions to life or work, there are few possibilities for mitigating their disease. Cell therapy via monocyte-enhanced perfusion through the stimulation of collateral formation is one of a few non-invasive options.

Our group examines arteriogenesis after monocyte transplantation into mice using the hindlimb ischemia model. Previously, we have demonstrated improvement in hindlimb perfusion using tetanus-stimulated syngeneic monocyte transplantation. In addition to the effects on the collateral formation, tumor growth could be affected by this therapy as well. To investigate these effects, we use a basement membrane-like matrix mouse model by injecting the extracellular matrix of the Engelbreth-Holm-Swarm sarcoma into the flank of the mouse, after occlusion of the femoral artery.

After the artificial tumor studies, we use intravital microscopy to study in vivo tumor-angiogenesis and monocyte homing within collateral arteries. Previous studies have described the histological examination of animal models, which presupposes subsequent analysis to post-mortem artifacts. Our approach visualizes monocyte homing to areas of collateralization in real time sequences, is easy to perform, and investigates the process of arteriogenesis and tumor angiogenesis in vivo.

Introduction

Cardiovascular diseases, including coronary heart disease or peripheral arterial disease, are the most common causes of death globally1. Cell therapy is a promising approach to treat cardiovascular disease, particularly for people who are not able to undergo surgical interventions. There are several approaches to use cells or their secreted substances as a therapeutic tool2,3, with the overall goal to improve the perfusion and maintain function of ischemic and underperfused tissue. One attempt to achieve this goal is to improve arteriogenesis, which enhances the development of collateral arteries. Monocytes are an important cell type associated with collateralization. Our group has focused on researching the effects of monocytes in areas of inflammation4,5, in particular using the hindlimb ischemia model to induce ischemia and subsequent inflammation6. Monocytes home to areas of inflammation and cause complex systemic responses that lead to the development of collateralization7.

With the use of intravital microscopy, we can study the behavior of these cells in vivo and observe the homing of injected monocytes to areas of inflammation. Most former studies only describe post mortem analyses, which hold disadvantages including an introduction of histological artifacts and large numbers of animal required for preparations. With our approach, we can investigate immunological processes and collateral formation via live imaging at multiple time points.

In addition to the development of collateral arteries in ischemic areas, monocytes also influence tumor growth. To investigate these processes, we inject a basement membrane-like matrix extracted from the Engelbreth-Holm-Swarm mouse sarcoma, a tumor rich in extracellular matrix proteins8, and analyze using intravital microscopy. This matrix is used to screen test molecules for either endothelial cell network formation or anti-cancer therapies through angiogenic inhibition; in this case, we will assess the tumor angiogenic potential of monocytes for cell therapy9,10,11.

The aim of this protocol is to demonstrate an easy and efficient way to study immunological processes caused by ischemia in an in vivo model. We can generate a more realistic test environment compared to histological workup of post mortem muscle tissue.

Protocol

Our study was performed with permission of the state of Saxony-Anhalt, Landesverwaltungsamt Halle, according to section 8 of the German law for animal protection. (§ 8, paragraph 1 of the German law for animal protection from 18.05.2016 - BGBI. I S. 1206, 1313, § 31 TierSchVersV from 13.08.2013).

NOTE: For the experiments here, 8 to 12 week old male BALB/c mice were used, and human monocytes from blood donors were used for the visualization of monocytes via intravital microscopy.

1. Cell Preparation

NOTE: For the isolation of monocytes, please see our previous published video on JoVE for instructions: "Isolation and Intravenous Injection of Murine Bone Marrow Derived Monocytes" by Wagner et al.4

NOTE: When working with the cells all steps must be sterile to avoid contamination.

  1. Cell Staining with 3,3'-Dioctadecyloxacarbocyanine Perchlorate
    1. Resuspend the cells in serum free culture medium with a density of 1 x 106 cells/mL.
      NOTE: Only serum free medium enables an efficient staining, since the lipophilic dye would otherwise already be captured by lipophilic components of the serum.
    2. Add 5 µL of 1 mM 3,3'-Dioctadecyloxacarbocyanine perchlorate in dimethylformamide to 1 mL of the cell suspension and resuspend carefully.
    3. Incubate the cell solution at 37 °C for 20 min.
    4. Centrifuge the cells at 37 °C and 500 x g for 5 min.
    5. Dislodge the supernatant and resuspend the cells with 37 °C warm fetal calf serum supplemented medium.
    6. Repeat the steps 1.1.4 and 1.1.5 twice.
    7. Count the cells with the formula:
      figure-protocol-1871
    8. Resuspend the cells with 150 µL sterile 0.9% NaCl solution.
    9. Inject the cells into the tail vein.

2. Anesthesia

  1. Inhalation Anesthesia
    1. Vaporize isoflurane with the help of a vaporizer using a concentration of 5% in a closed bin under a chemical safety hood.
    2. Handle the mouse carefully and put it into the bin.
    3. Handle the animal by the skin of the posterior neck after it has stopped moving.
  2. Intraperitoneal Anesthesia
    NOTE: Use isoflurane anesthesia, described under step 2.1, to perform an intraperitoneal injection. With the fast recovery and short-acting narcotic effect of the isoflurane anesthesia, it is easier to handle the mouse and inject intraperitoneal anesthesia.
    1. Use a solution of 2.4 mL Ketamine (10%), 0.8 mL Xylazine (2%), and 6.8 mL NaCl (0.9%) for the intraperitoneal injection.
    2. Weigh the animal before applying anesthetic.
      NOTE: The formula for the anesthetic is:
      figure-protocol-3046
    3. Use a 1 mL insulin syringe with a 30 G needle to inject the solution into the left underbelly.
    4. Place the mouse in its cage and wait for narcotic effect.
      NOTE: The narcotic effect normally appears within 5 min if the injection was successful. The correct depth of the anesthesia can be determined by the absence of either the lid reflex or reaction to toe pinch, as well as a regular, controlled rate of breathing.

3. Implantation of Basement Membrane-like Matrix

NOTE: This method is used by our group to study tumor angiogenesis after monocyte injection. Depending on the experiments, growth factors can be added to the basement membrane-like matrix. We performed femoral artery ligation before injecting the tumor in the flank of the mouse. The matrix must have a temperature of 4 °C for the injection. At this temperature, the matrix is fluid; the gel hardens to a solid at body temperature (37 °C). For better visibility of the subcutaneous matrix plug, shave the skin of the mouse at the injection site.

Note:Optional: Add 100 ng basic fibroblast growth factor, 300 ng vascular endothelial growth factor, and 26 I.U. heparin under sterile conditions to the basement membrane-like matrix.

  1. Load 1 mL of matrix into a 30 G insulin syringe and store on ice until use.
  2. Lay the animal on the table and hold the skin of the mouse next to the injection site on the flank.
  3. Inject 500 µL of the basement membrane-like matrix subcutaneously.
    NOTE: For practical reasons, it is necessary to inject the basement membrane-like matrix compactly at one location to avoid subcutaneous dispersion. It will be easier to dislodge the artificial tumor from the tissue after sacrificing the mouse at the end of the experiment.

4. Tail Vein Injection

NOTE: Practice the tail vein injection with NaCl solution on test animals before experimentation. If the monocytes cannot be adequately injected in the tail vein, there will be no systemic effect on the collateralization. In this protocol, we injected 2.5 million monocytes. Try to inject no more than 5 µL/g of bodyweight.

  1. Use the monocyte solution prepared under step 1.1.8 containing 2.5 million monocytes.
  2. Use a 30 G needle and a 1 mL insulin syringe for the injection.
  3. Carefully handle the mouse, restrain the animal in the restrainer, and make sure the mouse is not harmed and has adequate space for breathing.
  4. Put the restrainer on the heating pad so that the tail can contact the plate.
  5. Identify the tail veins, which are located on the lateral side of the tail.
  6. Turn the tail 90 °, so the tail vein appears on the upper side of the tail.
  7. Disinfect the injection side before injecting the monocytes.
  8. Try to inject the monocyte solution in a flat angle with the bevel of the needle facing up.
    NOTE: Stop the injection if a blister appears, as this is a sign of a failed injection. Attempt the procedure again more proximally.
  9. Stop bleeding at the injection site by applying gentle pressure on the tail for about 60s.
  10. Observe the animal for 30 min to monitor for systemic side effects and place the mouse in its cage after the animal has fully recovered.

5. Intravital Microscopy

  1. Preparation
    1. Place the anesthetized mouse on the heating pad (37 °C) to keep a constant temperature and fix the paws in place with adhesive tape.
    2. Disinfect the skin at the site of the leg or flank that is used for microscopy.
    3. Shave the region of interest for better handling and to avoid interference with hair.
    4. Excise the skin with a sterile scalpel and fine forceps in a square area of 0.5 x 0.5 cm.
      NOTE: It is important to keep the region of interest moist; otherwise, the quality of images and tissue will be compromised. NaCl solution can be used to moisten the area.
    5. Place the leg between two adjustable stamps and position a cover glass on top of the stamps.
    6. Ensure the tissue is wet and is in contact with the glass.
    7. Inject 50 µL rhodamine dextran retrobulbar into the venous system for better visibility of the vessels.
    8. Start microscopy and adjust the position of the leg if needed.
  2. Intravital microscopy settings
    1. Turn on the microscope, computer, electronic interfaces, and lasers.
    2. Turn on the heating unit of incubation chamber and/or heating stage (plate/pad), and set the temperature to 37 °C.
    3. Start the acquisition software. If the microscope is equipped with a resonant scanner, select this fast scanning mode.
    4. Wait until the temperature reaches a constant level (35 - 37 °C)
      NOTE: A stable temperature is important for: (a) the mouse, which under anesthesia cannot control its body temperature, and (b) avoiding or at least minimizing focal drift. This could take 1 h to several hours, depending on the surrounding conditions (e.g., air conditioning system and the number of heat sources in the room, including people). If immersion objectives are used, the contact zone between the lens and cover glass (or tissue) is a typical source of instability. Heating the lens with an objective heater may help; alternatively, a microscope with an autofocus system is highly recommended.
    5. Select a magnification lens with a high numeral aperture that fulfils the resolution requirements of the experiment (see note at the end of this section).
    6. Optimize the microscope settings with respect to gain, channel settings, scan speed, pixel resolution, depth volume, step size, and averaging before placing the experimental animal on the stage.
    7. Scan bidirectionally to reduce acquisition time.
    8. Place the anesthetized mouse on the prewarmed microscope stage after the microscope has reached stable conditions and the settings have been tested with the help of a dummy.
    9. Bring the region of interest within the basement membrane-like matrix into focus by using bright light illumination and inspect briefly the capillaries by ultraviolet light with adequate filter settings for the applied fluorophores.
    10. Switch to scanning mode; start scanning at low resolution 256 x 256 mode and enhance gain and laser power until a signal is observed on the monitor.
    11. Focus on the structure of interest. Zoom in until all details are visible.
    12. Define "start" and "end" positions in the axial direction.
    13. Stop scanning.
    14. Define stepping size (e.g., 0.5 µm) and number of focal planes (e.g., 10 - 20).
    15. Switch to the final pixel resolution (512 x 512 or 1,024 x 1,024) depending on the speed of the moving subcellular structures or cells and select the scan speed (scan frequency) that fits best to the movements. Bidirectional scanning is recommended to fasten the acquisition of stacks.
      NOTE: Select the highest scan rate of scanning that gives sufficient image quality. Typical point scanners provide speeds between 400 Hz and 1.4 kHz. Resonant scanners provide an additional 8 kHz or 12 kHz. By reducing the number of lines in the y-direction, the scan rate can be further increased (typical values are 512 x 512, 512 x 256, or 512 x 200 pixel resolution). Depending on the signal-to-noise ratio, one can try to improve the image quality by adding line averaging between 2 and 4. Typically, a setting of 512 x 200 with no averaging results in an acquisition time/frame of 18 ms in the bidirectional mode with an 8 KHz resonant scanner; with 512 x 200 and 4x averaging, it slows down to 56 ms per frame.

Results

Intravital microscopy for the examination of tumor and collateral vessel growth triggered by monocytes can help reveal new aspects in the molecular mechanisms of tumor angiogenesis and arteriogenesis. Cells must be prepared and injected carefully using the steps of the protocol. Differences can lead to variations between single experiments. The monocytes must be injected into the venous system (Figure 1) to maintain systemic effects and avoid emboli, which ca...

Discussion

The method described here sheds light on the development of collateral arteries, the behavior of monocytes in these vessels, and the process of arteriogenesis. The steps for applying this protocol are easy to learn and can be used in other fields of science. Despite these advantages, there are some disadvantages. For instance, microscopic equipment is required to execute the described techniques. Obtaining equipment for one experiment is unsustainable, so it is important to collaborate with other institutions to share th...

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

This work was supported by the ELSE-Kröner-Stiftung and the DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) SFB 854 (Sonderforschungsbereich, collaborative research center). Special thanks to Hans-Holger Gärtner, Audiovisuelles Medienzentrum, Otto-von-Guericke University Magdeburg, Magdeburg, Germany, for technical support.

Materials

NameCompanyCatalog NumberComments
10% fetal calf serum (FCS)Sigma Aldrich, Hamburg, Germany
1% penicillin/streptomycinSigma Aldrich, Hamburg, Germany
1mL Omnifix -F insuline syringeB. Braun, Melsungen AG, Melsungen, Germany
50 ml syringe Fresenius Kabi AG, Bad Homburg, GermanyInjectomat- syringe 50 ml with canule
6-well-ultra-low-attachement-platesCorning Incorporated, NY, USA
8- 12 week old, male, C57BL/6, BalbC mice Charles River, Sulzfeld, Germany
Adhesive tapeTESA SE, Hamburg, Germany
Acquisition SoftwareLeica, Wetzlar, Deutschland Leica Application Suite Advanced Fluorescence (LAS AF); Version: 2.7.3.9723
CanulesB. Braun, Melsungen AG, Melsungen, Germany29G, 30G
Cell culture dishGreiner Bio-One GmbH, Frickenhausen, Germany
Cell culture mediumManufactured by our group with single componentsMedium199, 10% Fetal calf serum, 1% Antibiotic (penicillin/streptomycin)
CentrifugeBeckman Coulter GmbH, Krefeld, GermanyAllegra X-15R centrifuge
Depilatory creamVeet, Mannheim, Germany
DiOInvitrogen Eugene, Oregon, USA
Disinfection agentSchülke&Mayr GmbH, Norderstedt, Germany
Disposable scalpel No.10 Feather safety razor Co.Ltd, Osaka, Japan 
EDTASigma Aldrich, Hamburg, Germany
Erlenmeyer flaskGVB, Herzogenrath, Germany
Ethanol 70%Otto Fischar GmbH und Co KG, Saarbrücken, Germany
Fetal Calf SerumSigma Aldrich, Hamburg, Germany
Fine ForcepsRubis, Stabio, Switzerland
Flurophor/RhodamindextranThermo Fischer Scientific, Waltham, MA USAKatalognummer: D-1819
GlovesRösner-Matby Meditrade GmbH, Kiefersfelden, Germany
Heating pad Labotect GmbH, Göttingen, Germany Hot Plate 062
Human macrophage-colony stimulating factorSigma Aldrich, Hamburg, GermanySRP3110 
Humane leucocyte filtersBlood preservation
IncubatorEwald Innovationstechnik GmbH, Bad Nenndorf, Germany
IsofluraneBaxter Deutschland GmbH, Unterschleißheim, Germany
Ketamine (10%)Ketavet, Pfizer Deutschland GmbH, Berlin , Germany
Leukocyte separation tubes (tubes with filter) Bio one GmbH, Frickenhausen, Germany
Light microscope Carl Zeiss SMT GmbH, Oberkochen, GermanyAxiovert 40 C
Lymphocyte separation medium LSM1077GE Healthcare, Pasching, Austria
Matrigel Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA
Medium M199 PAA Laboratories GmbH, Pasching, Austria
Microbiological work benchThermo Electron, LED GmbH, Langenselbold, GermanyHera safe
Microscope slideCarl Roth GmbH + Co. KG, KarlsruheArt. Nr. 1879
Microscope stand with incubator and heating unit Leica DMI 6000, Pecon, Germany
Monocyte wash bufferManufactured by our group with single componentsPBS, 0,5% BSA, 2mM EDTA
Mouse restrainerVarious
Multi-photon microscope Leica, Wetzlar, Deutschland Leica SP5 Confocal microscope, Cameleon, Coherent
NaCl (0,9%)Berlin Chemie AG, Berlin, Germany
Neubauer counting chamber Paul Marienfeld GmbH und Co.KG, Lauda-Königshofen, Germany
ObjectiveLeica, Wetzlar, Deutschland Leica HC PL APO 10x/0.4 CS
PBSLife technologies GmbH, Darmstadt, Germanyph 7,4 sterile
Penicillin/StreptomycinSigma Aldrich, Hamburg, Germany
PercollManufactured by our group with single components90 % Percoll, 10% 1,5M NaCl, ρ= 1,064 g cm-3
Percoll solutionGE Healthcare, Bio-Science AB, Uppsala, Sweden
PipettesEppendorf AG, Hamburg, Germany10µL/100µL/200µL/1000µL
Pipettes serologicalGreiner Bio-One GmbH, Frickenhausen, Germany Cellstar2ml, 5ml, 10ml
Pipetting headsEppendorf AG, Hamburg, Germany
PipetusEppendorf AG, Hamburg, Germany
Polystyrol tubeCellstar, Greiner Bio-One GmbH, Frickenhausen, Germany
ScissorWord Precision Instruments, Inc., Sarasota, USA
ScaleMettler PM4800 Delta Range, Mettler-Toledo GmbH, Gießen, Germany
Suction unitIntegra bioscience, Fernwald, GermanyVacusafe comfort
Surgical scissorsWord Precision Instruments, Inc., Sarasota, USA
Trypan blue solution 0,4 %Sigma Aldrich, Hamburg, Germany
Tubes with capGreiner Bio-One GmbH, Frickenhausen, Germany15ml, 50ml Cellstar
Xylazine (2 %)Ceva Tiergesundheit GmbH, Düsseldorf, Germany

References

  1. Volz, K. S., Miljan, E., Khoo, A., Cooke, J. P. Development of pluripotent stem cells for vascular therapy. Vascular pharmacology. 56 (5-6), 288-296 (2012).
  2. Henry, T. D., et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation. 107 (10), 1359-1365 (2003).
  3. Wagner, M., et al. Isolation and intravenous injection of murine bone marrow derived monocytes. Journal of visualized experiments JoVE. (94), (2014).
  4. Herold, J., et al. Transplantation of monocytes: a novel strategy for in vivo augmentation of collateral vessel growth. Human gene therapy. 15 (1), 1-12 (2004).
  5. Ito, W. D., Arras, M., Scholz, D., Winkler, B., Htun, P., Schaper, W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. The American journal of physiology. 273 (3 Pt 2), H1255-H1265 (1997).
  6. Herold, J., et al. Tetanus toxoid-pulsed monocyte vaccination for augmentation of collateral vessel growth. Journal of the American Heart Association. 3 (2), e000611 (2014).
  7. . Matrigel Matrix Available from: https://www.corning.com/au/en/products/life-sciences/products/surfaces/matrigel-matrix.html (2017)
  8. Eubank, T. D., Galloway, M., Montague, C. M., Waldman, W. J., Marsh, C. B. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. Journal of immunology (Baltimore, Md. 1950). 171 (5), 2637-2643 (2003).
  9. Fridman, R., et al. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. Journal of the National Cancer Institute. 83 (11), 769-774 (1991).
  10. Woodman, S. E., et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. The American journal of pathology. 162 (6), 2059-2068 (2003).
  11. Francke, A., Weinert, S., Strasser, R. H., Braun-Dullaeus, R. C., Herold, J. Transplantation of bone marrow derived monocytes: a novel approach for augmentation of arteriogenesis in a murine model of femoral artery ligation. American journal of translational research. 5 (2), 155-169 (2013).
  12. Houthuys, E., Movahedi, K., Baetselier, P., de Van Ginderachter, J. o. A., Brouckaert, P. A method for the isolation and purification of mouse peripheral blood monocytes. J. Immunol. Methods. 359 (1-2), 1-10 (2010).
  13. Berthold, F. Isolation of human monocytes by Ficoll density gradient centrifugation. Blut. 43 (6), 367-371 (1981).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Intravital MicroscopyMonocyte HomingTumor related AngiogenesisPeripheral Arterial DiseaseCell LabelingMatrigelVEGFBFGFHeparinSubcutaneous InjectionSystemic Cell Application

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved