A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Chemistry
* These authors contributed equally
Biomass is a sustainable fuel, as its CO2 emissions are reintegrated in biomass growth. However, the inorganic precursors in the biomass cause a negative environmental impact and slag formation. The selected short rotation coppice (SRC) willow wood has a high ash content ( = 1.96%) and, therefore, a high content of emission and slag precursors. Therefore, the reduction of minerals from SRC willow wood by low temperature microwave assisted hydrothermal carbonization (MAHC) at 150 °C, 170 °C, and 185 °C is investigated. An advantage of MAHC over conventional reactors is an even temperature conductance in the reaction medium, as microwaves penetrate the whole reactor volume. This allows a better temperature control and a faster cooldown. Therefore, a succession of depolymerization, transformation and repolymerization reactions can be analyzed effectively. In this study, the analysis of the mass loss, ash content and composition, heating values and molar O/C and H/C ratios of the treated and untreated SCR willow wood showed that the mineral content of the MAHC coal was reduced and the heating value increased. The process water showed a decreasing pH and contained furfural and 5-methylfurfural. A process temperature of 170 °C showed the best combination of energy input and ash component reduction. The MAHC allows a better understanding of the hydrothermal carbonization process, while a large-scale industrial application is unlikely because of the high investment costs.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved