A subscription to JoVE is required to view this content. Sign in or start your free trial.
A simple ATP-measuring assay and live/dead staining method were used to quantify and visualize Neisseria gonorrhoeae survival after treatment with ceftriaxone. This protocol can be extended to examine the antimicrobial effects of any antibiotic and can be used to define the minimal inhibitory concentration of antibiotics in bacterial biofilms.
The emergence of antibiotic resistant Neisseria gonorrhoeae (GC) is a worldwide health threat and highlights the need to identify individuals who fail treatment. This Gram-negative bacterium causes gonorrhea exclusively in humans. During infection, it is able to form aggregates and/or biofilms. The minimum inhibitory concentration (MIC) test is used for to determine susceptibility to antibiotics and to define appropriate treatment. However, the mechanism of the eradication in vivo and its relationship to laboratory results are not known. A method that examines how GC aggregation affects antibiotic susceptibility and shows the relationship between aggregate size and antibiotic susceptibility was developed. When GC aggregate, they are more resistant to antibiotic killing, with bacteria in the center surviving ceftriaxone treatment better than those in the periphery. The data indicate that N. gonorrhoeae aggregation can reduce its susceptibility to ceftriaxone, which is not reflected using the standard agar plate-based MIC methods. The method used in this study will allow researchers to test bacterial susceptibility under clinically relevant conditions.
Gonorrhea is a common sexually transmitted infection (STI)1. Neisseria gonorrhoeae (GC), a Gram-negative diplococcal bacterium, is the causative agent of this disease. Symptoms of genital infection can result in pain during urination, generalized genital pain, and urethral discharge. Infection is often asymptomatic2,3,4,5, and this allows for extended colonization. These untreated infections are a major health concern, as they have the potential to facilitate transmission of the organism and this can lead to complications such as pelvic inflammatory disease (PID) and disseminated gonococcal infection (DGI)6. Antibiotic-resistant gonorrhea is a major public health crisis and an increasing socioeconomic burden7. Reduced susceptibility to cephalosporins has resulted in treatment regimen change from a single antibiotic to dual therapy, which combines azithromycin or doxycycline with ceftriaxone8. The increased failure of ceftriaxone and azithromycin9,10, in combination with asymptomatic infections, highlights the need for understanding gonorrhea treatment failures.
The minimum inhibitory concentration (MIC) test, including agar dilution and disc diffusion tests, has been used as the standard medical test for identifying resistance to an antibiotic. Nevertheless, it is unclear if the MIC test reflects bacterial antibiotic resistance in vivo. The formation of bacterial biofilms contributes to the survival of bacteria in the presence of bactericidal concentrations of antibiotic: the MIC testing is unable to detect this effect11. Because GC can form biofilms on mucosal surfaces12, we hypothesize that antibiotic susceptibility within aggregates would be different from that seen in individual GC. Additionally, studies have shown that three phase variable surface molecules, Pili, opacity-associated protein (Opa), and lipooligosaccharides (LOS), that regulate inter-bacterium interactions, lead to different sized aggregates13,14,15. The contribution of these components to antibiotic resistance has not been examined due to the lack of proper methods.
Currently, there are several methods to measure biofilm eradication. The most widely used quantitative method is by measuring the changes in biomass using crystal violet staining16. However, the method requires significant experimental manipulation, which can potentially generate errors in experiment repeats17. The live/dead staining method used here allows visualization of live and dead bacteria and their distribution within the biofilm. However, the biofilm structure can pose as a physical barrier that reduces dye penetration. Therefore, to quantify live/dead bacteria within a group, the staining is limited to small biofilms or its precursor- microcolonies or aggregations. Other methods, including the agar dilution and disc diffusion tests, are not able to measure the effects of aggregation. To examine GC susceptibility within aggregation after antibiotic exposure, an ideal method would need to have both a quantitative assay that can measure live bacteria and visualize their distribution.
The procedure described here combines an ATP-utilization measurement and a live/dead staining assay to quantitatively and visually examine GC susceptibility within aggregates in the presence of antibiotics.
1. General maintenance of GC strains
2. Viability quantification of GC aggregations
3. Fluorescence microscopic analysis of Live/Dead of GC aggregates
4. Image analysis
Two methods were employed: an ATP utilization assay and a live/dead staining assay. The results can either be combined or individually used for examining bacterial survival within aggregates after antibiotic treatment. The ATP utilization assay has been shown to measure accurately viable bacteria in S. aureus biofilms20,21. Here, MS11Opa+Pil+ strain was used to examine the role of GC aggregation in antibiotic susceptibili...
Bacteria can form biofilms during infection of the human body. Traditional MIC testing may not reflect the concentration needed to eradicate bacteria in a biofilm. To test antimicrobials effects on a biofilm, methods based on biofilm biomass as well as plating CFUs can be erroneous due to the impact of biofilm structure. For example, the plating method only works if the biofilm can be disrupted. Hence, the CFU obtained may be lower than the actual number of viable bacteria. Visualizing dead and live bacteria within the b...
The authors have nothing to disclose.
This work was supported by a grant from National Institute of Health to D.C.S. and W.S. AI123340. L.-C.W., J.W., A.C., and E.N. were supported in part/participate in "The First-Year Innovation & Research Experience" program funded by the University of Maryland. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. We acknowledge the UMD CBMG Imaging Core for all microscopy experiments.
Name | Company | Catalog Number | Comments |
100x Kellogg's supplement | |||
Agar | United States Biological | A0930 | |
BacTiter Assay | Promega | G8232 | |
Ceftriaxone | TCI | C2226 | |
Difco GC medium base | BD | 228950 | |
Ferric nitrate, nonahydrate | Sigma-Aldrich | 254223-10G | |
Glucose | Thermo Fisher Scientific | BP350-1 | |
L-glutamine Crystalline Powder | Fisher Scientific | BP379-100 | |
BacLight live/dead staining | Invitrogen | L7012 | |
MS11 Neisseria gonorrhoeae strain | kindly provided by Dr. Herman Schneider, Walter Reed Army Institute for Research | ||
Potassium phosphate dibasic (K2HPO4) | Fisher Scientific | P290-500 | |
Potassium phosphate monobasic (KH2PO4) | Fisher Scientific | BP329-1 | |
Proteose Peptone | BD Biosciences | 211693 | |
Sodium chloride (NaCl) | Fisher Scientific | S671-10 | |
Soluble Starch | Sigma-Aldrich | S9765 | |
Thiamine pyrophosphate | Sigma-Aldrich | C8754-5G | |
Equipment | |||
Petri Dishes | VWR | 25384-302 | |
8-well coverslip-bottom chamber | Thermo Fisher Scientific | 155411 | |
96-well tissue culture plates | Corning, Falcon | 3370 | |
Biosafety Cabinet (NU-425-600 Class II, A2 Laminar Flow Biohazard Hood) | Nuaire | 32776 | |
CO2 Incubator | Fisher Scientific | Model 3530 | |
Confocal microscope equipped with live imaging chamber | Leica | SP5X | |
Corning 96 Well Black Polystyrene Microplate | Corning | 3904 | |
Glomax Illuminator | Promega | E6521 | |
Pipette tips (0.1-10 µL) | Thermo Fisher Scientific | 02-717-133 | |
Pipette tips (1000 µL) | VWR | 83007-382 | |
Pipette tips (200 µL) | VWR | 53509-007 | |
Spectrophotometer Ultrospec 2000 UV | Pharmacia Biotech | 80-2106-00 | |
Sterile 15 ml conical tubes | VWR | 21008-216 | |
Sterile Microcentrifuge Tubes (1.7 mL) | Sorenson BioScience | 16070 | |
Sterile polyester-tipped applicators | Fisher Scientific | 23-400-122 | |
Sonicator | Kontes | Equivelent to 9110001 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved