Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

It is often necessary to assess the potential cytotoxicity of a set of compounds on cultured cells. Here, we describe a strategy to reliably screen for toxic compounds in a 96-well format.

Abstract

Cytotoxicity is a critical parameter that needs to be quantified when studying drugs that may have therapeutic benefits. Because of this, many drug screening assays utilize cytotoxicity as one of the critical characteristics to be profiled for individual compounds. Cells in culture are a useful model to assess cytotoxicity before proceeding to follow up on promising lead compounds in more costly and labor-intensive animal models. We describe a strategy to identify compounds that affect cell growth in a tdTomato expressing human neural stem cells (NSC) line. The strategy uses two complementary assays to assess cell number. One assay works via the reduction of 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan as a proxy for cell number and the other directly counts the tdTomato expressing NSCs. The two assays can be performed simultaneously in a single experiment and are not labor intensive, rapid, and inexpensive. The strategy described in this demonstration tested 57 compounds in an exploratory primary screen for toxicity in a 96-well plate format. Three of the hits were characterized further in a six-point dose response using the same assay set-up as the primary screen. In addition to providing excellent corroboration for toxicity, comparison of results from the two assays may be effective in identifying compounds affecting other aspects of cell growth.

Introduction

One of the most important characteristics that needs to be determined for a chemical compound that has therapeutic potential is its toxicity to animal cells. This characteristic will determine whether a drug is a good candidate for more extensive study. In most instances, compounds with minimal toxicity are sought but there are situations in which a compound with the capacity to kill specific cell types is of interest, e.g., anti-tumorigenic drugs. Although whole animals are the best model systems to determine systemic toxicity, the cost and labor involved is prohibitive when more than a few compounds need to be tested. As such mammalian cell culture is generally used as the most efficient alternative1,2. Small to medium throughput drug screens are an important modality through which toxicity can be assessed in cell culture. These screens can be used to interrogate annotated libraries targeting individual signaling pathways. The general format of such a screen is to initially test all the compounds in the library at a single dose (generally 10 µM) in an exploratory primary toxicity screen, and then perform an in-depth secondary dose response screen to fully characterize the toxicity profile of hits from the primary screen. The methods to implement this strategy will be described here and provide a quick, efficient, and inexpensive way to identify and characterize toxic compounds.

Multiple methods have been developed to assess cytotoxicity of small compounds and nanomaterial in mammalian cells3,4. It should be noted that certain materials can interact with the assay providing misleading results, and such interactions should be tested when characterizing hits from toxicity screens4. Cytotoxicity assays include trypan blue exclusion5, lactate dehydrogenase (LDH) release assay6, Alamar blue assay7, calcien acetoxymethyl ester (AM)8, and the ATP assay9. All these assays measure various aspects of cell metabolism which can serve as a proxy for cell number. While all offer benefits, tetrazolium salt-based assays such as 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis(2-methoxy-4-nitro-5-sulfopheny)-2H-tetrazolium-5-carboxyanilide inner salt (XTT)-1, and 4-(3-[4-Iodophenyl]-2-[4-nitrophenyl]-2H-5-tetrazolio)-1,3-benzene disulfonate (WST-1)10,11 provide good accuracy and ease of use at low cost. MTT, which will be used in this demonstration, is reduced to an insoluble formazan by a mitochondrial reductase and the rate of this conversion correlates strongly with cell number. This assay has been routinely utilized at both a small scale and for screening libraries with up to 2,000 compounds12. Direct counting of cells by a labeled marker offers another method to assess the cellular number, and unlike the MTT assay it can provide additional information about the dynamics of cellular growth. Several publicly available algorithms are available to perform automated cell count analyses and there are also proprietary algorithms that are part of software packages for imaging readers13,14. In this method description, a human neural stem cell (NSC) line that has been genetically edited to constitutively express tdTomato15 will serve as a test line to compare cellular viability results between an MTT assay and an automated cell counting assay in a screen assessing toxicity of 57 test compounds. Although the primary goal of this strategy was to identify and characterize toxic compounds, it has the additional benefit of potentially identifying growth inhibitory and growth enhancing compounds and thus provides an effective method for identifying drugs that can modulate cellular growth.

Protocol

1. NSC culture

NOTE: Manipulation of a human NSC line will be described below but any cell line can be used for this protocol. All cell culture work is performed in a biological safety cabinet.

  1. Coat a 96-well plate with basement membrane/extracellular matrix (ECM).
    1. Thaw aliquot of ECM (Table of Materials), which will facilitate attachment of NSC, on ice. Dilute ECM to the appropriate concentration (generally 1:100) in 10 mL base medium (Table of Materials) and add 50 µL per well to each of 60 interior wells of a 96-well plate (Figure 1). Use only the interior 60 wells to avoid artifacts that may result from the edge effect16.
    2. Let the plate sit at room temperature or in a cell culture incubator (37 °C, 5% CO2) for at least 30 min.
  2. Dissociate and plate neural stem cells.
    NOTE: Cells for use in this method should be grown to at least 80% confluence in a T75 flask.
    1. Culture cells in a T75 flask in a cell culture incubator at 37 °C and 5% CO2 in NSC medium that is composed of base medium, B27, non-essential amino acids, 2 mM glutamine, and 10 ng/mL basic fibroblast growth factor (FGFb or FGF2).
    2. Remove cells from the incubator once they reach 80% confluence and aspirate off NSC medium. Add an appropriate amount of cell dissociation reagent (3 mL for a T75 flask; Table of Materials) and incubate for 5 min in the incubator.
    3. After incubation, add 7 mL of NSC medium in the T75 flask and pipette vigorously to ensure all cells become detached. Transfer the dissociated cell solution to a 15 mL tube and centrifuge at 200 x g for 5 min.
    4. After centrifugation, remove supernatant from the tube and resuspend cells in 10 mL of NSC medium and count cells.
    5. Readjust concentration of cells to 200,000 cells/mL with NSC medium. Ensure cells are fully resuspended for homogeneous plating into wells.
    6. Plate 100 µL of the cell mixture (20,000 cells) in the 60 interior wells of three 96-well plates that have been coated as described in section 1.1. Use six of the eight slots of an 8-channel multichannel pipettor to plate cells column-by-column.
    7. Add 100 µL of base medium or NSC medium to all wells without cells to minimize potential evaporation from outermost wells.
    8. Under a cell culture microscope, visually inspect at least 10 wells on each of the three 96-well plates to confirm that the cells are seeded at the expected density. Do not proceed with the assay if cells are plated at a density too sparse or dense.

2. Treating cells with compounds

NOTE: The home-made library tested in this demonstration contains compounds that modulate wingless/integrated (Wnt), retinoic acid, transforming growth factor-beta (TGF-β), and sonic hedgehog signaling pathways as well as a variety of tyrosine kinases.

  1. Exploratory primary screen for toxicity/cell number
    1. Aliquot 50−100 μL of up to 57 test compounds (Supplemental Table 1) at a concentration of 10 mM in 100% dimethyl sulfoxide (DMSO) into the interior 60 wells of a U-bottomed, V-bottomed or round-bottomed 96-well plate with three DMSO wells as a control (see Figure 1 for a plate map). This will serve as the master compound plate with 25 µL of compound that can be frozen and thawed several times.
      NOTE: Flat bottomed plates should not be used as it will be more difficult to aspirate small volumes of compounds from them with a bench top pipettor.
    2. Remove cell culture plates from incubator 16-24 h after splitting as described in section 1 and aspirate off NSC medium column-by-column with an 8-channel multi-well pipettor using only six of the eight multi-well slots. Add 95 µL of fresh NSC medium to cells in each of the three replicate plates and place plates back in incubator until step 2.1.4 below is completed.
    3. Add 49 µL of NSC medium to each of the interior 60 wells of an empty U-bottomed, V-bottomed or round-bottomed 96-well plate with an 8-channel multi-well pipettor. Unseal the master compound plate and use a bench top pipettor or equivalent instrument to pipette 1 µL of compound from the master plate into the 49 µL of NSC medium in each of the interior 60 wells.
    4. Mix the diluted compound 3x with the bench top pipettor.
    5. Remove the three 96-well plates of NSCs from the incubator, pipette 15 µL of each diluted compound with the bench top pipettor and dispense a 5 µL aliquot of compound into each of the three plates.
      NOTE: This 1:20 dilution of compound into the cells in combination with the initial 1:50 dilution in step 2.1.3 yields a 1:1000 dilution such that the final concentration of the compounds on the NSCs will be 10 µM with a DMSO concentration of 0.1% and the final concentration for the DMSO controls will be 0.1%.
    6. Incubate cells with compound for 72 h and proceed with cytotoxicity assays. Shorter intervals can be used but a 72-hour incubation period should maximize the potential cytotoxic effects of tested compounds.
  2. Dose response assay
    NOTE: The set-up for the 96-well used for the dose-response is displayed in Figure 2.
    1. Use column 2 for six DMSO control replicates and test triplicates of up to three different compounds at two-fold serial dilutions at six doses starting with a high dose of 10 µM.
    2. Dilute 4 µL of DMSO or test compound in DMSO into 196 µL of NSC medium in a 1.5 mL microcentrifuge tube. Add 25 µL of DMSO to the column of wells from B2-G2 and 50 µL of test compounds to the row from B3-B11 with the three tested compounds in 10 mM triplicates in rows B3-B5, B6-B8, and B9-B11.
    3. Pipette 25 µL of NSC medium to the remaining empty columns in the interior portion of the 96-well plate. Remove 25 µL of compound from wells B3-B11 with a multichannel pipettor, add to wells C3-C11, and mix at least five times. Repeat the process for the remaining rows to generate triplicates at two-fold dilutions for a total of six doses for each of the compounds.
    4. Generate NSCs for the dose response exactly as described for the primary screen in section 2.1. The compounds for the dose response are added to and incubated on the cells exactly as described in steps 2.1.5 and 2.1.6.
      NOTE: Three biological replicates of the dose response assay are performed by repeating the assay on the NSCs at different passages on separate days.

3. Imaging cells on a plate reader

  1. After cells have been incubated with compounds for the allotted time, image cells on a plate reader to determine the pre-treatment cell number per well.
    NOTE: Instructions for imaging cells are reader-specific but generally follow a similar strategy. The directions below apply to the reader used in this demonstration (Table of Materials).
  2. Remove the plate from the incubator and place it inside the plate reader. Open the imager software to set up protocol and experiment files for the study. Go to Imager Manual Mode on Task Manager and click Capture now….
  3. Choose 96-well plate as the vessel type, select 10x for the magnification, and red fluorescent protein (RFP) 531 and 593 for imaging tdTomato. Pick a well, then click Autofocus to focus image, and Auto Expose for proper exposure time. Manually adjust focus and exposure if needed.
  4. Once proper focus and exposure have been obtained, click the camera icon to capture the picture. Then click PROCESS/ANALZYE above image to continue building the protocol and select the ANALYSIS tab.
  5. Click Cellular Analysis in ADD ANALYSIS STEP to the right of the image and click START. Image will show highlighted cells to indicate each individual cell. The Options selection may be clicked to alter parameters to better select cells based upon the fluorescence threshold or cell size. If the imager is properly counting the cells, then click ADD STEP at the bottom of the screen.
  6. Click the icon at the top of the screen to Create experiment from image set, which will open a window with the experiment. Once open, click Procedure under the Protocol tab and in the new window that opens select Read, then in the new window click full plate to select only the 60 wells that contain the cells (B2...G11). Click OK to save changes, then click OK in the Procedure window.
  7. The plate can now be imaged by this protocol and the experimental file can be saved. Click the play icon to run the plate. Once the first plate has been imaged, image the other two plates. Upon completion of the imaging, download the cell count data to a spreadsheet for analysis. Take all images at 10x magnification.

4. Terminal MTT cytotoxicity assay

NOTE: Begin the MTT assay within two hours of completing tdTomato imaging.

  1. Make a 5 mg/mL MTT stock solution by weighing out 25 mg of MTT and resuspending it in 5 mL of NSC medium. Vortex the solution until there are no visible precipitates of MTT, which could take several minutes.
  2. Remove cell culture plates from the incubator and aspirate off cell culture medium. Dilute MTT 1:10 in cell culture medium and add 100 µL of MTT to each well of cells.
  3. Incubate cells at 37 °C for 2 h. A purplish precipitate should be visible roughly in proportion to the number of cells in the well. Either aspirate the MTT solution off plates or invert the plate quickly to flick solution out of the plate.
  4. Add 50 µL of 100% DMSO to each well and shake plates at room temperature for 10 min at 400 rpm. Read the absorbance of each well at 595 nm in a plate reader and export data to a spreadsheet for analysis.

5. Data analysis

  1. Perform an analysis of tdTomato cell counts and absorbances with appropriate software (commercial spreadsheet, R). Calculate averages for absorbance or cell count of the three DMSO replicates on each plate for normalization purposes, then divide the value for the cell counts or absorbances for each well on the plate by this average and convert to a percentage. This yields the normalized cell count or absorbance relative to DMSO control for each plate.
  2. Calculate the mean normalized count or absorbance and standard deviation for replicate wells on the three plates.
    NOTE: At this point there should be four different sets of normalized values: one for each of the plates and one mean for the three replicate plates.
  3. Be conservative and use a normalized value at or below 25% for the average across the three replicate plates to classify a compound as toxic. Also, because only a single treatment per compound is performed on each plate, only label compounds that fall below this threshold on all three replicate plates as toxic. Examine fluorescent images of all compounds that this analysis filters as toxic to visually confirm toxicity.
    NOTE: The identification of compounds with a growth inhibitory or growth enhancing effect is more difficult to assess in an exploratory assay of this type due to the lack of replicates on each plate. However, the following is a quick way to identify compounds that may either slow down or enhance cellular growth.
  4. Calculate the standard deviation for the three replicate DMSO controls on each plate and then filter for any compounds that have average values at least two standard deviations above or below the DMSO control. Compounds that fall out of this filter on each of the three plates may warrant further investigation.
  5. Use the same analysis strategy for the dose response as the primary toxicity screen. Calculate the averages for the DMSO controls for each biological replicate and use these values to normalize the percent live cells or percent absorbances for each compound/dose combination. Calculate the means and standard error of the means for all compound/dose combinations for the three biological replicates.
  6. Transform the concentration to its log value, generate a dose response curve for the log of concentration versus normalized viability, and fit the curve with a non-linear regression analysis (analysis can be performed in R or various commercial statistical packages). Calculate the lethal dose 50 (or technically in this case the viable dose 50) or concentration of compound that results in 50% toxicity from the equation of this curve. Many software packages will automatically calculate this figure.

Results

The automated cell count data identified eleven compounds with less than 25% viability when normalized to the DMSO control while the MTT data identified these same compounds plus two additional ones (Table 1 and Table 2, shaded red). The two compounds found to be toxic only in the MTT assay (wells F3 and G10) had 31% and 39%, respectively, the number of tdTomato-positive cells as the control and by rank order were the next two most toxic compounds in this library after those deemed to be...

Discussion

The primary goal of this article was to describe a strategy that could efficiently and inexpensively identify compounds affecting cell growth in a low- to moderate-throughput screening. Two orthogonal techniques were utilized to assess cell number to increase confidence in the conclusions and offer additional insights that would not be available if only a single assay was used. One of the assays used a fluorescent cell imager to directly count tdTomato-positive cells and the second was dependent on the well-characterized...

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the NINDS Intramural Research Program.

Materials

NameCompanyCatalog NumberComments
B-27 (50X)ThermoFisher Scientific17504001Neural stem cell medium component.  
BenchTop pipettorSorenson Bioscience73990Provides ability to pipette compound library into a 96-well plate in one shot.
BioLite 96 well multidishThermo Scientific130188Any 96 well cell culture plate will work.  We use these in our work.
Cell culture microscopeNikonEclipse TS100Visual inspection of cells to ensure proper density.
Cytation 5/ Imaging readerBioTekCYT3MFVUsed for cell imaging and absorbance readings.
DMSOFisher Scientific610420010Solvent for compounds used in screen. Dissolves MTT precipitates to facilitate absorbance measurements.
FGF-basicPeprotech100-18BNeural stem cell medium component.  
GelTrexThermoFisher ScientificA1413202Neural stem cell basement membrane matrix.  Allows cells to attach to cell culture plates.
Gen5 3.04BioTekAnalysis software to determine cell counts for tdTomato expressing cells.
GlutamineThermoFisher Scientific25030081Neural stem cell medium component.  
Microtest U-BottomBecton Dickinson3077Storage of compound libraries.
MTTThermoFisher ScientificM6494Active assay reagent to determine cellular viability.
Multichannel pippetteRaininE8-1200Column-by-column addition of cell culture medium, MTT, or DMSO.
Neurobasal mediumThermoFisher Scientific21103049Neural stem cell base medium.
RFP filter cubeBioTek1225103Filter in Cytation 5 used to image tdTomato expressing cells.
TrypLEThermoFisher Scientific12605036Cell dissociation reagent.

References

  1. National Research Council. . Toxicity Testing in the 21st century: A Vision and a Strategy. , (2007).
  2. Llorens, J., Li, A. A., Ceccatelli, S., Sunol, C. Strategies and tools for preventing neurotoxicity: to Test, to predict, and how to do it. Neurotoxicology. 33 (4), 796-804 (2012).
  3. Adan, A., Kiraz, Y., Baran, Y. Cell proliferation and cytotoxicity assays. Current Pharmaceutical Biotechnology. 17 (14), 1213-1221 (2016).
  4. Ciofani, G., Danti, S., D'Alessandro, D., Moscato, S., Menciassi, A. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochemical and Biophysical Research Communications. 394 (2), 405-411 (2010).
  5. Tennant, J. R. Evaluation of the trypan blue technique for determination of cell viability. Transplantation. 2 (6), 685-694 (1964).
  6. Korzeniewski, C., Callewaert, D. M. An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods. 64 (3), 313-320 (1983).
  7. Ahmed, S. A., Gogal, R. M., Walsh, J. E. A new rapid and simple nonradioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of Immunological Methods. 170 (2), 211-224 (1994).
  8. Neri, S., Mariani, E., Meneghetti, A., Cattini, L., Facchini, A. Calcein-acetyoxymethyl cytotoxicity assay: Standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clinical and Diagnostic Laboratory Immunology. 8 (6), 1131-1135 (2001).
  9. Crouch, S. P., Kozlowski, R., Slater, K. J., Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. Journal of Immunological Methods. 160 (1), 81-88 (1993).
  10. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods. 65 (1-2), 55-63 (1983).
  11. Berridge, M. V., Herst, P. M., Tan, A. S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review. 11, 127-152 (2005).
  12. Malik, N., et al. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology. 45, 192-200 (2014).
  13. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  14. Carpenter, A. E., et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology. 7 (10), 100 (2006).
  15. Cerbini, T., et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluriopotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS One. 10 (1), 0116032 (2015).
  16. Lundholt, B. K., Scudder, K. M., Pagliaro, L. A simple technique for reducing edge effect in cell-based assays. Journal of Biomolecular Screening. 8 (5), 566-570 (2003).
  17. Qie, S., et al. Glutamine depletion and glucose depletion trigger growth inhibition via distinctive gene expression reprogramming. Cell Cycle. 11 (19), 3679-3690 (2012).
  18. Muelas, M. W., Ortega, F., Breitling, R., Bendtsen, C., Westerhoff, H. V. Rational cell culture optimization enhances experimental reproducibility in cancer cells. Scientific Reports. 8 (1), 3029 (2018).
  19. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., Mitchell, J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Research. 47 (4), 936-942 (1987).
  20. Romijn, J. C., Verkoelen, C. F., Schroeder, F. H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate. 12 (1), 99-110 (1988).
  21. Jo, H. Y., et al. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Experimental Neurobiology. 24 (3), 235-245 (2015).
  22. Kalinina, M. A., Skvortsov, D. A., Rubtsova, M. P., Komarova, E. S., Dontsova, O. A. Cytotoxicity test based on human cells labeled with fluorescent proteins: photography, and scanning for high-throughput assay. Molecular Imaging and Biology. 20 (3), 368-377 (2018).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cell GrowthSurvivalCultured Mammalian CellsCytotoxicityCompound ScreeningDose Response CurveT75 FlaskNSC MediumCell Dissociation ReagentAutomated Cell CounterMultichannel PipettorExtracellular Matrix96 Well Plates

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved