A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a circular RT-PCR-based strategy by combining circular RT-PCR, quantitative RT-PCR, RNA 5' polyphosphatase-treatment, and Northern blot. This protocol includes a normalization step to minimize the influence of unstable 5' triphosphate, and it is suitable for discriminating and mapping the primary and processed transcripts stably accumulated in maize mitochondrion.
In plant mitochondria, some steady-state transcripts have 5' triphosphate derived from transcription initiation (primary transcripts), while the others contain 5' monophosphate generated post-transcriptionally (processed transcripts). To discriminate between the two types of transcripts, several strategies have been developed, and most of them depend on presence/absence of 5' triphosphate. However, the triphosphate at primary 5' termini is unstable, and it hinders a clear discrimination of the two types of transcripts. To systematically differentiate and map the primary and processed transcripts stably accumulated in maize mitochondrion, we have developed a circular RT-PCR (cRT-PCR)-based strategy by combining cRT-PCR, RNA 5' polyphoshpatase treatment, quantitative RT-PCR (RT-qPCR), and Northern blot. As an improvement, this strategy includes an RNA normalization step to minimize the influence of unstable 5' triphosphate.
In this protocol, the enriched mitochondrial RNA is pre-treated by RNA 5' polyphosphatase, which converts 5' triphsophate to monophosphate. After circularization and reverse transcription, the two cDNAs derived from 5' polyphosphatase-treated and non-treated RNAs are normalized by maize 26S mature rRNA, which has a processed 5' end and is insensitive to 5' polyphosphatase. After normalization, the primary and processed transcripts are discriminated by comparing cRT-PCR and RT-qPCR products obtained from the treated and non-treated RNAs. The transcript termini are determined by cloning and sequencing of the cRT-PCR products, and then verified by Northern blot.
By using this strategy, most steady-state transcripts in maize mitochondrion have been determined. Due to the complicated transcript pattern of some mitochondrial genes, a few steady-state transcripts were not differentiated and/or mapped, though they were detected in a Northern blot. We are not sure whether this strategy is suitable to discriminate and map the steady-state transcripts in other plant mitochondria or in plastids.
In plant mitochondria, many mature and precursor RNAs are accumulated as multiple isoforms, and the steady-state transcripts can be divided into two groups based on the difference at their 5' ends1,2,3,4. The primary transcripts have 5' triphosphate ends, which are derived from transcription initiation. By contrast, the processed transcripts have 5' monophosphate generated by post-transcriptional processing. Discrimination and mapping of the two types of transcripts are important to unravel the molecular mechanisms underlying tra....
1. Primer Design
Estimation of mitochondrial RNA circularization efficiency
In a previous study, both total and mitochondrial RNAs were used for cRT-PCR mapping of mitochondrial transcript termini in Arabidopsis (Arabidopsis thaliana), and the two types of RNAs gave similar mapping results12. Initially, we also used total RNAs for cRT-PCR mapping of mitochondrial transcript termini in ma.......
In a previous study, total and mitochondrial RNAs from cell suspension culture of Arabidopsis were used to map mitochondrial transcript termini by cRT-PCR, and similar results were obtained12. However, only enriched mitochondrial RNA was used to map mitochondrial transcript termini in many other studies1,2,3,9. We found that the enrichment of mitochondrial RNA i.......
This work was supported by the National Natural Science Foundation of China (grant no. 31600250, Y.Z.), Science and Technology Projects of Guangzhou City (grant no. 201804020015, H.N.), and the China Agricultural Research System (grant no. CARS-04-PS09, H.N.).
....Name | Company | Catalog Number | Comments |
Acetic acid | Aladdin, China | A112880 | To prepare 1x TAE buffer |
Applied Biosystems 2720 Thermal Cycler | Thermo Fisher Scientific, USA | 4359659 | Thermal cycler for PCR amplification |
Ascorbic acid | Sigma-aldrich, USA | V900134 | For preparation of extraction buffer |
Biowest Agarose | Biowest, Spain | 9012-36-6 | To resolve PCR products and RNAs |
Bovine serum albumin | Sigma-aldrich, USA | A1933 | For preparation of extraction buffer |
Bromophenol blue | Sigma-aldrich, USA | B8026 | For preparation of loading buffer for agarose gel electrophoresis and Northern blot |
DEPC | Sigma-aldrich, USA | V900882 | Deactivation of RNase |
DIG Northern starter kit | Roche, USA | 12039672910 | For DIG-RNA labeling and Northern blot. This kit contains the reagents for transcription-labeling of RNA with DIG and T7 RNA polymerase, hybridization and chemiluminescent detection. |
EDTA | Sigma-aldrich, USA | V900106 | For preparation of extraction buffer and 1x TAE buffer |
EGTA | Sigma-aldrich, USA | E3889 | For preparation of wash buffer |
Gel documentation system | Bio-Rad, USA | Gel Doc XR+ | To image the agarose gel |
Glycerol | Sigma-aldrich, USA | G5516 | For preparation of loading buffer for agarose gel electrophoresis |
GoldView II (5000x) | Solarbio,. China | G8142 | DNA staining |
Hybond-N+, Nylon membrane | Amersham Biosciences, USA | RPN119 | For Northern blot |
Image Lab | Bio-Rad, USA | Image Lab 3.0 | Image gel, and compare the abundance of PCR products. |
KH2PO4 | Sigma-aldrich, USA | V900041 | For preparation of extraction buffer |
KOH | Aladdin, China | P112284 | For preparation of extraction buffer |
L-cysteine | Sigma-aldrich, USA | V900399 | For preparation of extraction buffer |
Millex | Millipore, USA | SLHP033RB | To sterile extraction and wash buffers by filtration |
Miracloth | Calbiochem, USA | 475855-1R | To filter the ground kernel tissues |
MOPS | Sigma-aldrich, USA | V900306 | For preparation of running buffer for Northern blot |
NanoDrop | Thermo Fisher Scientific, USA | 2000C | For RNA concentration and purity assay |
NaOH | Sigma-aldrich, USA | V900797 | For preparation of wash buffer |
pEASY-Blunt simple cloning vector | TransGen Biotech, China | CB111 | Cloning of the gel-recovered band. It contains a T7 promoter several bps upstream of the insertion site. |
Phanta max super-fidelity DNA polymerase | Vazyme, China | P505 | DNA polymerase for PCR amplification |
Polyvinylpyrrolidone 40 | Sigma-aldrich, USA | V900008 | For preparation of extraction buffer |
Primer Premier 6.24 | PREMIER Biosoft, USA | Primer Premier 6.24 | To design primers for reverse transcription and PCR amplification |
PrimeScript II reverse transcriptase | Takara, Japan | 2690 | To synthesize the first strand cDNA |
PureLink RNA Mini kit | Thermo Fisher Scientific, USA | 12183025 | For RNA purificaion |
RNA 5' polyphosphatase | Epicentre, USA | RP8092H | To convert 5' triphosphate to monophosphate |
RNase inhibitor | New England Biolabs, UK | M0314 | A component of RNA self-ligation and 5' polyphosphatase treatment reactions, and it is used to inhibite the activity of RNase. |
Sodium acetate | Sigma-aldrich, USA | V900212 | For preparation of running buffer for Northern blot |
Sodium chloride | Sigma-aldrich, USA | V900058 | To prepare 20x SSC |
SsoFas evaGreen supermixes | Bio-Rad, USA | 1725202 | For RT-qPCR |
T4 RNA Ligase 1 | New England Biolabs, UK | M0437 | For RNA circularization |
Tetrasodium pyrophosphate | Sigma-aldrich, USA | 221368 | For preparation of extraction buffer |
TIANgel midi purification kit | Tiangen Biotech, China | DP209 | To purify DNA fragments from agarose gel |
Tris | Aladdin, China | T110601 | To prepare 1x TAE buffer |
TRIzol reagent | Invitrogen, USA | 15596026 | To extract mitochondiral RNA. |
Universal DNA purification kit | Tiangen Biotech, China | DP214 | To recover linearized plastmids from the restriction enzyme digestion reaction |
Xylene cyanol FF | Sigma-aldrich, USA | X4126 | For preparation of loading buffer for agarose gel electrophoresis |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved