A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a circular RT-PCR-based strategy by combining circular RT-PCR, quantitative RT-PCR, RNA 5' polyphosphatase-treatment, and Northern blot. This protocol includes a normalization step to minimize the influence of unstable 5' triphosphate, and it is suitable for discriminating and mapping the primary and processed transcripts stably accumulated in maize mitochondrion.
In plant mitochondria, some steady-state transcripts have 5' triphosphate derived from transcription initiation (primary transcripts), while the others contain 5' monophosphate generated post-transcriptionally (processed transcripts). To discriminate between the two types of transcripts, several strategies have been developed, and most of them depend on presence/absence of 5' triphosphate. However, the triphosphate at primary 5' termini is unstable, and it hinders a clear discrimination of the two types of transcripts. To systematically differentiate and map the primary and processed transcripts stably accumulated in maize mitochondrion, we have developed a circular RT-PCR (cRT-PCR)-based strategy by combining cRT-PCR, RNA 5' polyphoshpatase treatment, quantitative RT-PCR (RT-qPCR), and Northern blot. As an improvement, this strategy includes an RNA normalization step to minimize the influence of unstable 5' triphosphate.
In this protocol, the enriched mitochondrial RNA is pre-treated by RNA 5' polyphosphatase, which converts 5' triphsophate to monophosphate. After circularization and reverse transcription, the two cDNAs derived from 5' polyphosphatase-treated and non-treated RNAs are normalized by maize 26S mature rRNA, which has a processed 5' end and is insensitive to 5' polyphosphatase. After normalization, the primary and processed transcripts are discriminated by comparing cRT-PCR and RT-qPCR products obtained from the treated and non-treated RNAs. The transcript termini are determined by cloning and sequencing of the cRT-PCR products, and then verified by Northern blot.
By using this strategy, most steady-state transcripts in maize mitochondrion have been determined. Due to the complicated transcript pattern of some mitochondrial genes, a few steady-state transcripts were not differentiated and/or mapped, though they were detected in a Northern blot. We are not sure whether this strategy is suitable to discriminate and map the steady-state transcripts in other plant mitochondria or in plastids.
In plant mitochondria, many mature and precursor RNAs are accumulated as multiple isoforms, and the steady-state transcripts can be divided into two groups based on the difference at their 5' ends1,2,3,4. The primary transcripts have 5' triphosphate ends, which are derived from transcription initiation. By contrast, the processed transcripts have 5' monophosphate generated by post-transcriptional processing. Discrimination and mapping of the two types of transcripts are important to unravel the molecular mechanisms underlying transcription and transcript end maturation.
To distinguish between the primary and processed transcripts in plant mitochondrion, four major strategies have been developed. The first strategy is to pre-treat the mitochondrial RNAs with tobacco acid pyrophosphatase (TAP), which converts 5' triphosphate to monophosphate and enables primary transcripts to be circularized by RNA ligase. The transcript abundances of TAP-treated and non-treated RNA samples are then compared by rapid amplification of cDNA ends (RACE) or circular RT-PCR (cRT-PCR)2,3,4. In the second strategy, processed transcripts are firstly depleted from mitochondrial RNAs using terminator 5'-phosphate-dependant exonuclease (TEX), and the primary transcripts left are then mapped by primer extension analysis5,6. The third strategy is to pre-cap the primary transcripts using guanylyl transferase, and then the position of triphosphated 5' termini is determined by primer extension together with ribonuclease or S1 nuclease protection analysis7,8,9. Different from those depending on the presence/absence of 5' triphosphate, the fourth strategy combines in vitro transcription, site-directed mutagenesis, and primer extension analysis to characterize the putative promoters and determine the transcription initiation sites8,10,11. By using these strategies, many primary and processed transcripts have been determined in plant mitochondria.
However, several studies have reported that the 5' triphosphate of primary transcripts were unstable, and they were easily converted to monophosphate for unknown reason2,4,12,13. This problem hinders a clear discrimination of the two types of transcripts by using techniques depending on the presence/absence of 5' triphosphate, and previous efforts to systematically discriminate between the primary and processed transcripts in plant mitochondria failed2,12.
In this protocol, we combine cRT-PCR, RNA 5' polyphosphatase treatment, RT-qPCR, and Northern blot to systematically distinguish the primary and processed transcripts stably accumulated in maize (Zea mays) mitochondrion (Figure 1). cRT-PCR allows simultaneous mapping of 5' and 3' extremities of a RNA molecule, and it is usually adapted to map transcript termini in plants2,12,14,15. RNA 5' polyphosphatase could remove two phosphates from the triphosphated 5' termini, which makes the primary transcripts available for self-ligation by RNA ligase. Previous studies showed that mature 26S rRNA in maize had processed 5' terminus, and it was insensitive to RNA 5' polyphosphatase1,16. To minimize the influence of unstable triphosphate at primary 5' termini, the 5' polyphosphatase-treated and non-treated RNAs are normalized by mature 26S rRNA, and the primary and processed transcripts are then differentiated by comparing the cRT-PCR products obtained from the two RNA samples. The cRT-PCR mapping and discrimination results are verified by Northern blot and RT-qPCR, respectively. Finally, alternative primers are used to amplify those transcripts detected in Northern blot but not by cRT-PCR. By using this cRT-PCR-based strategy, most steady-state transcripts in maize mitochondrion have been differentiated and mapped1.
1. Primer Design
2. Preparation of Crude Mitochondrion from Maize Developing Kernels
3. Extraction of Mitochondrial RNA
4. RNA 5’ Polyphosphatase Treatment
5. RNA Circularization
6. Reverse Transcription
7. Normalization
8. PCR Amplification
9. Determination of Transcript Termini
10. Verification of the cRT-PCR Mapping Results by RNA Gel Blot Hybridization
NOTE: RNA gel blot hybridization is performed by using a commercial kit (Table of Materials), which contains the reagents for transcription-labeling of RNA with digoxigenin (DIG) and T7 RNA polymerase, hybridization, and immunological detection. Please refer to the protocols provided in this kit for more details. Make sure that only RNase free equipment is used for the whole procedure.
11. Discrimination of Primary and Processed 5’ Ends
Estimation of mitochondrial RNA circularization efficiency
In a previous study, both total and mitochondrial RNAs were used for cRT-PCR mapping of mitochondrial transcript termini in Arabidopsis (Arabidopsis thaliana), and the two types of RNAs gave similar mapping results12. Initially, we also used total RNAs for cRT-PCR mapping of mitochondrial transcript termini in ma...
In a previous study, total and mitochondrial RNAs from cell suspension culture of Arabidopsis were used to map mitochondrial transcript termini by cRT-PCR, and similar results were obtained12. However, only enriched mitochondrial RNA was used to map mitochondrial transcript termini in many other studies1,2,3,9. We found that the enrichment of mitochondrial RNA i...
The authors have nothing to disclose.
This work was supported by the National Natural Science Foundation of China (grant no. 31600250, Y.Z.), Science and Technology Projects of Guangzhou City (grant no. 201804020015, H.N.), and the China Agricultural Research System (grant no. CARS-04-PS09, H.N.).
Name | Company | Catalog Number | Comments |
Acetic acid | Aladdin, China | A112880 | To prepare 1x TAE buffer |
Applied Biosystems 2720 Thermal Cycler | Thermo Fisher Scientific, USA | 4359659 | Thermal cycler for PCR amplification |
Ascorbic acid | Sigma-aldrich, USA | V900134 | For preparation of extraction buffer |
Biowest Agarose | Biowest, Spain | 9012-36-6 | To resolve PCR products and RNAs |
Bovine serum albumin | Sigma-aldrich, USA | A1933 | For preparation of extraction buffer |
Bromophenol blue | Sigma-aldrich, USA | B8026 | For preparation of loading buffer for agarose gel electrophoresis and Northern blot |
DEPC | Sigma-aldrich, USA | V900882 | Deactivation of RNase |
DIG Northern starter kit | Roche, USA | 12039672910 | For DIG-RNA labeling and Northern blot. This kit contains the reagents for transcription-labeling of RNA with DIG and T7 RNA polymerase, hybridization and chemiluminescent detection. |
EDTA | Sigma-aldrich, USA | V900106 | For preparation of extraction buffer and 1x TAE buffer |
EGTA | Sigma-aldrich, USA | E3889 | For preparation of wash buffer |
Gel documentation system | Bio-Rad, USA | Gel Doc XR+ | To image the agarose gel |
Glycerol | Sigma-aldrich, USA | G5516 | For preparation of loading buffer for agarose gel electrophoresis |
GoldView II (5,000x) | Solarbio,. China | G8142 | DNA staining |
Hybond-N+, Nylon membrane | Amersham Biosciences, USA | RPN119 | For Northern blot |
Image Lab | Bio-Rad, USA | Image Lab 3.0 | Image gel, and compare the abundance of PCR products. |
KH2PO4 | Sigma-aldrich, USA | V900041 | For preparation of extraction buffer |
KOH | Aladdin, China | P112284 | For preparation of extraction buffer |
L-cysteine | Sigma-aldrich, USA | V900399 | For preparation of extraction buffer |
Millex | Millipore, USA | SLHP033RB | To sterile extraction and wash buffers by filtration |
Miracloth | Calbiochem, USA | 475855-1R | To filter the ground kernel tissues |
MOPS | Sigma-aldrich, USA | V900306 | For preparation of running buffer for Northern blot |
NanoDrop | Thermo Fisher Scientific, USA | 2000C | For RNA concentration and purity assay |
NaOH | Sigma-aldrich, USA | V900797 | For preparation of wash buffer |
pEASY-Blunt simple cloning vector | TransGen Biotech, China | CB111 | Cloning of the gel-recovered band. It contains a T7 promoter several bps upstream of the insertion site. |
Phanta max super-fidelity DNA polymerase | Vazyme, China | P505 | DNA polymerase for PCR amplification |
Polyvinylpyrrolidone 40 | Sigma-aldrich, USA | V900008 | For preparation of extraction buffer |
Primer Premier 6.24 | PREMIER Biosoft, USA | Primer Premier 6.24 | To design primers for reverse transcription and PCR amplification |
PrimeScript II reverse transcriptase | Takara, Japan | 2690 | To synthesize the first strand cDNA |
PureLink RNA Mini kit | Thermo Fisher Scientific, USA | 12183025 | For RNA purificaion |
RNA 5' polyphosphatase | Epicentre, USA | RP8092H | To convert 5' triphosphate to monophosphate |
RNase inhibitor | New England Biolabs, UK | M0314 | A component of RNA self-ligation and 5' polyphosphatase treatment reactions, and it is used to inhibite the activity of RNase. |
Sodium acetate | Sigma-aldrich, USA | V900212 | For preparation of running buffer for Northern blot |
Sodium chloride | Sigma-aldrich, USA | V900058 | To prepare 20x SSC |
SsoFas evaGreen supermixes | Bio-Rad, USA | 1725202 | For RT-qPCR |
T4 RNA Ligase 1 | New England Biolabs, UK | M0437 | For RNA circularization |
Tetrasodium pyrophosphate | Sigma-aldrich, USA | 221368 | For preparation of extraction buffer |
TIANgel midi purification kit | Tiangen Biotech, China | DP209 | To purify DNA fragments from agarose gel |
Tris | Aladdin, China | T110601 | To prepare 1x TAE buffer |
TRIzol reagent | Invitrogen, USA | 15596026 | To extract mitochondiral RNA. |
Universal DNA purification kit | Tiangen Biotech, China | DP214 | To recover linearized plastmids from the restriction enzyme digestion reaction |
Xylene cyanol FF | Sigma-aldrich, USA | X4126 | For preparation of loading buffer for agarose gel electrophoresis |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved