A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe a surgical protocol to consistently induce robust descending thoracic aortic aneurysms in mice. The procedure involves left thoracotomy, thoracic aorta exposure, and placement of a sponge soaked in porcine pancreatic elastase on the aortic wall.
According to the Center for Disease Control, aortic aneurysms (AAs) were considered a leading cause of death in all races and both sexes from 1999-2016. An aneurysm forms as a result of progressive weakening and eventual dilation of the aorta, which can rupture or tear once it reaches a critical diameter. Aneurysms of the descending aorta in the chest, called descending thoracic aortic aneurysms (dTAA), make up a large proportion of aneurysm cases in the United States. Uncontained dTAA rupture is almost universally lethal, and elective repair has a high rate of morbidity and mortality. The purpose of our model is to study dTAA specifically, to elucidate the pathophysiology of dTAA and to search for molecular targets to halt the growth or reduce the size of dTAA. By having a murine model to study thoracic pathology precisely, targeted therapies can be developed to specifically test dTAA. The method is based on the placement of porcine pancreatic elastase (PPE) directly on the outer murine aortic wall after surgical exposure. This creates a destructive and inflammatory reaction, which weakens the aortic wall and allows for aneurysm formation over weeks to months. Though murine models possess limitations, our dTAA model produces robust aneurysms of predictable size. Furthermore, this model can be used to test genetic and pharmaceutical targets which may arrest dTAA growth or prevent rupture. In human patients, interventions such as these could help avoid aneurysm rupture, and difficult surgical intervention.
The purpose of this method is to study the development, pathophysiology, and structural changes in the murine descending thoracic aorta during aortic aneurysm formation. Our model offers a reproducible and consistent method to induce thoracic aortic aneurysms (dTAA) in mice thereby allowing for the testing of various genetic and pharmacologic inhibitors. This work can help identify drugs and gene-therapies which could be translated to a viable treatment strategy for humans with dTAA disease.
dTAAs form when the wall of the thoracic aorta becomes weakened and dilates over time until reaching a critical diameter when tearing or rupture can th....
Animal protocols were approved by the University of Virginia Institutional Animal Care and Use Committee (No. 3634).
1. Induction of anesthesia and intubation
The application of our protocol results in robust dTAA in mice compared to saline controls. The TAAs developed are fusiform in shape and occur only in the treated portion of the aorta (Figure 1 and Figure 2)11. Figure 2 shows an example of a video micrometry measurement at tissue harvest. Using Equation 1, the aortic dilation is 130% in this example.
The original study by Johnston .......
The thoracic and abdominal aorta are cellularly and embryologically distinct, which is relevant to aneurysmal disease14,15,16. Therefore, a specific animal model to study TAA is needed. Though other murine dTAA models have been published8, ours is the only model to create descending thoracic aortic dilatation which can be considered truly aneurysmal (over 50% dilation). Furthermore, our model is relativel.......
This work was supported by AHA Scientist Development Grant 14SDG18730000 (M.S.), NIH K08 HL098560 (G.A.) and RO1 HL081629 (G.R.U.) grants. This project was supported by the Thoracic Surgery Foundation for Research and Education (TSFRE) Research Grant (PI: G. Ailawadi). The content is solely the responsibility of the authors and does not necessarily represent the views of the NHLBI or the TSFRE. We thank Anthony Herring and Cindy Dodson for their knowledge and technical expertise.
....Name | Company | Catalog Number | Comments |
Angiocatheter (22G) | Used for ET Tube | ||
Dumont Tweezers; Pattern #7 x2 | Roboz | RS-4982 | |
Graefe Tissue Forceps | Roboz | RS-5158 | |
Harms Forceps x2 | Roboz | RS-5097 | |
Intracardiac Needle Holder; Extra Delicate; Carbide Jaws; 7" Length | Roboz | RS-7800 | |
 KL 1500 LED Light Source | Leica | 150-400 | |
 M205A Dissction Microscope | Leica | CH 94-35 | |
Iris Scissors, 11cm, Tungsten Carbide | World Precision Instruments | 500216-G | |
Metal Clip board | Use with the Mouse Retractor Set | ||
Mouse Retractor Set | Kent | SURGI-5001 | Need 2 short and 1 tall fixators |
Mouse Ventilator MiniVent Type 845, 115 V, Power Supply with US Connector | Harvard Apparatus | 73-0043 | MiniVent Ventilator for Mice (Model 845), Single Animal, Volume Controlled |
Sigma Aldrich | Elastase from porcine pancreas | E0258-50MG | Can be purchased in various size bottles |
Small Vessel Cauterizer Kit | Fine Science Tools | 18000-00 | Recommend using rechargable AA batteries |
Spring Scissors, 10.5cm | World Precision Instruments | 14127 | |
Steril Swabs (Sponges) | Sugi | 31603 | Can be cut to size |
Surgi Suite Surgical Platform | Kent | Attach to clip board | |
Tech IV Isoflurane Vap | Jorgensen Laboratories | J0561A | Anesthesia vaporizer |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved