Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe a surgical protocol to consistently induce robust descending thoracic aortic aneurysms in mice. The procedure involves left thoracotomy, thoracic aorta exposure, and placement of a sponge soaked in porcine pancreatic elastase on the aortic wall.

Abstract

According to the Center for Disease Control, aortic aneurysms (AAs) were considered a leading cause of death in all races and both sexes from 1999-2016. An aneurysm forms as a result of progressive weakening and eventual dilation of the aorta, which can rupture or tear once it reaches a critical diameter. Aneurysms of the descending aorta in the chest, called descending thoracic aortic aneurysms (dTAA), make up a large proportion of aneurysm cases in the United States. Uncontained dTAA rupture is almost universally lethal, and elective repair has a high rate of morbidity and mortality. The purpose of our model is to study dTAA specifically, to elucidate the pathophysiology of dTAA and to search for molecular targets to halt the growth or reduce the size of dTAA. By having a murine model to study thoracic pathology precisely, targeted therapies can be developed to specifically test dTAA. The method is based on the placement of porcine pancreatic elastase (PPE) directly on the outer murine aortic wall after surgical exposure. This creates a destructive and inflammatory reaction, which weakens the aortic wall and allows for aneurysm formation over weeks to months. Though murine models possess limitations, our dTAA model produces robust aneurysms of predictable size. Furthermore, this model can be used to test genetic and pharmaceutical targets which may arrest dTAA growth or prevent rupture. In human patients, interventions such as these could help avoid aneurysm rupture, and difficult surgical intervention.

Introduction

The purpose of this method is to study the development, pathophysiology, and structural changes in the murine descending thoracic aorta during aortic aneurysm formation. Our model offers a reproducible and consistent method to induce thoracic aortic aneurysms (dTAA) in mice thereby allowing for the testing of various genetic and pharmacologic inhibitors. This work can help identify drugs and gene-therapies which could be translated to a viable treatment strategy for humans with dTAA disease.

dTAAs form when the wall of the thoracic aorta becomes weakened and dilates over time until reaching a critical diameter when tearing or rupture can th....

Protocol

Animal protocols were approved by the University of Virginia Institutional Animal Care and Use Committee (No. 3634).

1. Induction of anesthesia and intubation

  1. Place an 8-10-week-old male C57BL/6 mouse in a closed chamber with continuous flow of 5% isoflurane and oxygen mixture for 5 min, until respirations are visibly slowed.
    NOTE: Different strains, genders and ages of mice can be used depending on the experimental protocol. Female mice may be more difficult to intubate bec.......

Representative Results

The application of our protocol results in robust dTAA in mice compared to saline controls. The TAAs developed are fusiform in shape and occur only in the treated portion of the aorta (Figure 1 and Figure 2)11. Figure 2 shows an example of a video micrometry measurement at tissue harvest. Using Equation 1, the aortic dilation is 130% in this example.

The original study by Johnston .......

Discussion

The thoracic and abdominal aorta are cellularly and embryologically distinct, which is relevant to aneurysmal disease14,15,16. Therefore, a specific animal model to study TAA is needed. Though other murine dTAA models have been published8, ours is the only model to create descending thoracic aortic dilatation which can be considered truly aneurysmal (over 50% dilation). Furthermore, our model is relativel.......

Acknowledgements

This work was supported by AHA Scientist Development Grant 14SDG18730000 (M.S.), NIH K08 HL098560 (G.A.) and RO1 HL081629 (G.R.U.) grants. This project was supported by the Thoracic Surgery Foundation for Research and Education (TSFRE) Research Grant (PI: G. Ailawadi). The content is solely the responsibility of the authors and does not necessarily represent the views of the NHLBI or the TSFRE. We thank Anthony Herring and Cindy Dodson for their knowledge and technical expertise.

....

Materials

NameCompanyCatalog NumberComments
Angiocatheter (22G)Used for ET Tube
Dumont Tweezers; Pattern #7 x2RobozRS-4982
Graefe Tissue ForcepsRobozRS-5158
Harms Forceps x2RobozRS-5097
Intracardiac Needle Holder; Extra Delicate; Carbide Jaws; 7" LengthRobozRS-7800
 KL 1500 LED Light SourceLeica150-400
 M205A Dissction MicroscopeLeicaCH 94-35
Iris Scissors, 11cm, Tungsten CarbideWorld Precision Instruments500216-G
Metal Clip boardUse with the Mouse Retractor Set 
Mouse Retractor SetKentSURGI-5001Need 2 short and 1 tall fixators
Mouse Ventilator MiniVent Type 845, 115 V, Power Supply with US ConnectorHarvard Apparatus73-0043MiniVent Ventilator for Mice (Model 845), Single Animal, Volume Controlled
Sigma AldrichElastase from porcine pancreasE0258-50MGCan be purchased in various size bottles
Small Vessel Cauterizer KitFine Science Tools18000-00Recommend using rechargable AA batteries
Spring Scissors, 10.5cmWorld Precision Instruments14127
Steril Swabs (Sponges)Sugi31603Can be cut to size
Surgi Suite Surgical PlatformKentAttach to clip board 
Tech IV Isoflurane VapJorgensen Laboratories J0561AAnesthesia vaporizer 

References

  1. Coady, M. A., et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery. 113 (3), 489-491 (1997).
  2. Aggarwal, S., Qamar, A., Sharma, V., Sharma, A.

Explore More Articles

Murine Surgical ModelTopical ElastaseDescending Thoracic Aortic AneurysmC57 Black Six MouseThoracotomyAortic DissectionPorcine Pancreatic Elastase

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved