A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol is designed for the imaging and analysis of the dynamics of cell orientation and tissue growth in the Drosophila abdominal epithelia as the fruit fly undergoes metamorphosis. The methodology described here can be applied to the study of different developmental stages, tissues, and subcellular structures in Drosophila or other model organisms.
Within multicellular organisms, mature tissues and organs display high degrees of order in the spatial arrangements of their constituent cells. A remarkable example is given by sensory epithelia, where cells of the same or distinct identities are brought together via cell-cell adhesion showing highly organized planar patterns. Cells align to one another in the same direction and display equivalent polarity over large distances. This organization of the mature epithelia is established over the course of morphogenesis. To understand how the planar arrangement of the mature epithelia is achieved, it is crucial to track cell orientation and growth dynamics with high spatiotemporal fidelity during development in vivo. Robust analytical tools are also essential to identify and characterize local-to-global transitions. The Drosophila pupa is an ideal system to evaluate oriented cell shape changes underlying epithelial morphogenesis. The pupal developing epithelium constitutes the external surface of the immobile body, allowing long-term imaging of intact animals. The protocol described here is designed to image and analyze cell behaviors at both global and local levels in the pupal abdominal epidermis as it grows. The methodology described can be easily adapted to the imaging of cell behaviors at other developmental stages, tissues, subcellular structures, or model organisms.
To achieve their roles, epithelial tissues fully rely on the spatial organization of their cellular components. In most epithelia, cells are not only packed against each other to create a precise cobblestone layer but they orient themselves relative to the body axes.
The functional importance of precise tissue organization is obvious in sensory epithelia, such as the vertebrate inner ear and retina. In the first case, hair and supporting cells align in a specific axial direction to efficiently sense mechanical inputs such as sound and motion1,2. Similarly, photoreceptor cell spatial organization is essential for achieving optimal optical properties by the retina3. Spatial control of cell position and orientation is thus of particular relevance for proper physiological function.
Drosophila is a holometabolous insect that undergoes a complete transformation of its larval body structures through metamorphosis, giving rise to its adult tissues. The Drosophila pupa is an excellent model for the noninvasive live imaging of a variety of dynamic events, including developmental cell migration4, cell division and growth dynamics5, muscle contraction6, cell death7, wound repair8, and cell orientation9. In the adult Drosophila, the external epithelium shows a high degree of order. This is easily observed on the arrangements of trichomes (i.e., cell protrusions originating from single epithelial cells) and sensory bristles all over the fly's body surface10. Indeed, trichomes are aligned in parallel rows guiding airflow11. The morphogenesis of the adult epithelia and the ordered arrangement of the individual cells starts during embryogenesis and culminates during pupal stages. While in embryos cell divisions, intercalations, and shape changes all decrease tissue order12,13, this is reverted at later stages of development, especially at pupal stages, when the fly approaches maturity9.
The immobile Drosophila pupa provides an ideal system to evaluate cell shape and orientation changes. The pupal abdominal epidermis presents special advantages. While the precursors of the adult head, thorax, genitalia, and appendages grow and get patterned from larval stages, the histoblasts, which are integrated into the larval epidermis, start growing and differentiating only at pupariation14. This feature allows the tracking of all spatiotemporal events involved in the establishment of tissue order in its entirety9.
Histoblasts are specified during embryonic development at contralateral positions in each presumptive abdominal segment. The dorsal abdominal epidermis of the adult derives from dorsolaterally located histoblast nests present at the anterior and posterior compartments15,16. As histoblasts expand, replacing the larval epithelial cells (LECs), the contralateral nests fuse at the dorsal midline forming a confluent sheet17,18,19,20.
This work describes 1) a methodology for dissection, mounting, and long-term live imaging of the Drosophila pupae, and 2) analytical methods to study the dynamics of cellular orientation and growth at high spatiotemporal resolution. A detailed protocol is provided here, covering all the steps required from the initial pupae preparation (i.e., staging and imaging) to the extraction and quantification of directionality and orientation features. We also describe how to infer local tissue properties from the analysis of cell clones. All the steps described are minimally invasive and allow long-term live analyses. The methods described here can be easily adapted and applied to other developmental stages, tissues, or model organisms.
NOTE: This protocol is divided into five steps: (1) staging the pupae, (2) preparing the pupae for imaging, (3) live imaging of the growing abdominal epithelia, (4) generation of genetic mosaics, (5) data processing and analysis (including sections describing how to analyze cell orientation dynamics from cell junction outlines and growth dynamics from cell clones).
1. Staging of Drosophila pupae before imaging
2. Preparing pupae for live imaging
NOTE: After staging, the pupae are dissected and mounted as described below (see also Figure 1).
3. Live imaging of growing abdominal epithelia
NOTE: An inverted laser scanning confocal microscope equipped with a 40x/1.3 NA oil immersion objective was used to image pupae at different developmental stages.
4. Generation of genetic mosaics to follow behaviors of cell clones
NOTE: We employ mitotic recombination to induce genetic mosaics in the abdominal epithelium via site-specific recombination (FLP/FRT system21,22) (Figure 2).
5. Data processing and analyses
NOTE: Data are processed using ImageJ (imagej.nih.gov/ij/).
The protocol described above covers the preparation of Drosophila pupae for long-term live imaging and the procedures for the analysis of cell orientation and growth dynamics of the abdominal epidermis. By applying this methodology it is possible to generate high-resolution movies of the developing pupae for periods of up to 48 h without significant photobleaching or phototoxicity. Snapshots depicting the abdominal epidermis (e.g., histoblasts and LECs) at different time points a...
Long-range order is an essential characteristic of most functional physiological units. During morphogenesis, order is achieved through the integration of complex instructions implemented with high temporal and spatial precision. Multiple and multilevel constrains are integrated into stereotyped tissue arrangements.
Polarity and directionality are critical to ordered spatial arrangement during development. Polarity implies symmetry breaking during development. The achievement of asymmetry is n...
The authors have no conflicts of interests.
We would like to thank members of the Martín-Blanco laboratory for helpful discussions. We also thank Nic Tapon (The Crick Institute, London, UK), the Bloomington Stock Center (University of Indiana, USA) and FlyBase (for Drosophila gene annotation). Federica Mangione was supported by a JAE-CSIC predoctoral fellowship. The Martín-Blanco laboratory was funded from the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (BFU2014-57019-P and BFU2017-82876-P) and from the Fundación Ramón Areces.
Name | Company | Catalog Number | Comments |
Analysis Software | - | ImageJ | Analyzing data |
Drosophila | Atpa::GFP | - | Strains employed for data collection |
Drosophila | hsflp1.22;FRT40A/FRT40A Ubi.RFP.nls | - | Strains employed for data collection |
Dumont 5 Forceps | FST | 11251-20 | 1.5 mm diameter for dissection |
Glass Bottom Plates | Mat Tek | P35G-0.170-14-C | Mounting pupae for data collection |
Halocarbon Oil 27 | Sigma-Aldrich | 9002-83-9 | mounting pupae |
Inverted Confocal microscope | Zeiss | LSM700 | Data collection |
Stereomicroscope | Leica | DFC365FX | Visualization of the pupae during dissection |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved