Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a growth condition to culture the small colony variant of Pseudomonas aeruginosa. We also describe two separate methods for the detection and quantitation of the exopolysaccharide alginate produced by P. aeruginosa using a traditional uronic acid carbazole assay and an alginate-specific monoclonal antibody (mAb) based ELISA.

Abstract

Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen, can overproduce an exopolysaccharide alginate resulting in a unique phenotype called mucoidy. Alginate is linked to chronic lung infections resulting in poor prognosis in patients with cystic fibrosis (CF). Understanding the pathways that regulate the production of alginate can aid in the development of novel therapeutic strategies targeting the alginate formation. Another disease-related phenotype is the small colony variant (SCV). SCV is due to the slow growth of bacteria and often associated with increased resistance to antimicrobials. In this paper, we first show a method of culturing a genetically defined form of P. aeruginosa SCV due to pyrimidine biosynthesis mutations. Supplementation of nitrogenous bases, uracil or cytosine, returns the normal growth to these mutants, demonstrating the presence of a salvage pathway that scavenges free bases from the environment. Next, we discuss two methods for the measurement of bacterial alginate. The first method relies on the hydrolysis of the polysaccharide to its uronic acid monomer followed by derivatization with a chromogenic reagent, carbazole, while the second method uses an ELISA based on a commercially available, alginate-specific mAb. Both methods require a standard curve for quantitation. We also show that the immunological method is specific for alginate quantification and may be used for the measurement of alginate in the clinical specimens.

Introduction

Chronic lung infections with Pseudomonas aeruginosa are a major cause of morbidity and mortality in patients with cystic fibrosis (CF). During early childhood, patients are colonized by multiple bacterial pathogens including nonmucoid isolates of P. aeruginosa1,2. Emergence of the small colony variant (SCV) isolates as well as mucoid isolates is a marker for the onset to chronic infections. SCV isolates are highly drug resistant3 due to their slow growth rates4, which renders them a severe deterrent in the treatment regiments and other chronic i....

Protocol

1. SCV Growth Conditions and Physiological Activation of the Salvage Pathway

  1. Detection of SCV.
    1. Streak the P. aeruginosa strains PAO1, PAO1ΔpyrD, PAO581, and PAO581ΔpyrD on prewarmed Pseudomonas isolation agar (PIA) plates and grow at 37 °C for 48 h. On the growth plate identify a single colony isolate that has the SCV phenotype (colony size of 1−3 mm as opposed to the normal 3−5 mm colony size).
    2. Repeat step 1.1.1 to obtain a.......

Representative Results

Figure 1 shows plates of PAO1 and PAO581 with or without in-frame deletion in the pyrD gene (a gene in the pyrimidine biosynthesis pathway) that results in SCV6. The PAO1 SCV mutant was restored to normal growth in response to uracil supplementation (Figure 1A,B). Furthermore, the PAO581ΔpyrDSCV mutant was returned to mucoidy with the same uracil treatment, because t.......

Discussion

Both SCV and alginate are important disease markers implicated in several chronic infections. Therefore, the ability to grow SCV as well as study the regulation and production of alginate by P. aeruginosa is integral to the discovery of novel treatments for these chronic illnesses.

SCV strains are notoriously difficult to grow due to their slow growth rate4 as compared to other P. aeruginosa strains, which aids in their antimicrobial resistance

Acknowledgements

This work was supported by the National Institutes of Health (NIH) grants R44GM113545 and P20GM103434.

....

Materials

NameCompanyCatalog NumberComments
1-Step Ultra TMB-ELISAThermo Scientific34028via Fisher Scientific
Absolute Ethanol (200 Proof)Fisher ScientificBP2818-4Molecular Bio-grade
Accu Block Digital Dry BathLabnetNC0205808via Fisher Scientific
Assay Plates 96-wellCoStar2021-12-20
Bench Top Vortex-Genie 2Scientific IndustriesG560
Boric AcidResearch Products International Corp.10043-35-3
Cabinet IncubatorVWR1540
CarbazoleSigmaC-5132
Carbonate-Bicarbonate BufferSigmaC3041
Centrifuge Tubes (50 ml)Fisher Scientific05-539-13via Fisher Scientific
Culture Test TubesFisher Scientific14-956-6Dvia Fisher Scientific
Cuvette Polystyrene (1.5 ml)Fisher Scientific14955127via Fisher Scientific
CytosineAcros Organics71-30-7
Diposable Inoculation LoopsFisher Scientific22-363-597
D-Mannuronic Acid SodiumSigma AldrichSMB00280
FMC AlginateFMC2133
GlycerolFisher ScientificBP906-5For Molecular Biology
Mouse Anti-Alginate Monoclonal AntibodyQED BiosciencesN/ALot # :15725/15726
Phosphate Buffered Saline Powder (PBS)SigmaP3813
Pierce Goat Anti-Mouse Poly-HRP AntibodyThermo Scientific32230via Fisher Scientific
Potassium HydroxideFisher Scientific1310-58-3via Fisher Scientific
Prism 7GraphPad
Pseudomonas Isolation Agar (PIA)Difco292710via Fisher Scientific
Pseudomonas Isolation Broth (PIB)Alpha BiosciencesP16-115via Fisher Scientific
Round ToothpicksDiamondAny brand
Seaweed alginate (Protanal CR 8133)FMC Corporation
Skim MilkDifco232100via Fisher Scientific
SmartSpec Plus SpectrophotometerBioRad170-2525or preferred vendor
Sodium Chloride (NaCl)SigmaS-5886
SpectraMax i3x Multi-mode MicroPlate ReaderMolecular Devicesi3xor preferred vendor
Sterile Petri Dish 100mm x 15mmFisher ScientificFB0875713via Fisher Scientific
Sulfuric AcidFisher ScientificA298-212Technical Grade
Sulfuric Acid (2 Normal -Stop Solution)R&D SystemsDY994
Tween 20SigmaP2287
UracilAcros Organics66-22-8

References

  1. Govan, J. R., Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological Reviews. 60 (3), 539-574 (1996).
  2. Hogardt, M., Heesemann, J.

Explore More Articles

Pseudomonas AeruginosaSmall Colony VariantSCVAlginateELISAUronic Acid CarbazolePhysiological ActivationSalvage PathwayOD600

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved